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Throughout this paper we assume that spaces are completely
regular T,-spaces and maps are continuous. The completion of a space
X with respect to its finest uniformity is called the topological comple-
tion of X, and denoted by xX. According to Morita [8] a space X is
called pseudoparacompact (resp. pseudo-Lindelsf) if xX is paracompact
(resp. Lindelof).

As for these notions, in the same paper Morita proved the follow-
ing remarkable results.

Theorem 1 (Morita [8], Theorems 3.1, 3.2 and 3.5).

1) pX is compact iff X is pseudocompact.

2) pX is always a paracompact M-space for any M-space X.

(8) Let X be an M-space. X is pseudo-Lindelof iff it is the quasi-
perfect tnverse image of a separable metric space.

The characterizations of pseudoparacompactness and pseudo-
Lindeldfness have been obtained by Howes [4] and Ishii [5] independ-
ently. On the other hand, in [2] Hanai and Okuyama (cf. Isiwata [6])
essentially proved the following result: “If a space X is the inverse
image of a pseudocompact space under an open quasi-perfect map,
then X is pseudocompact”. Here the assumption that the map is open
cannot be dropped in general ([3] Example 2.4). Analogously to this
result, in § 1 we shall prove the following theorem which is a partial
answer to a problem posed by Ishii [5] concerning (2) and (3) of
Theorem 1: “Is pseudoparacompactness or pseudo-Lindelofness pre-
served under taking the inverse image by a quasi-perfect (or perfect)
map?”’

Theorem 2. If there is an open quasi-perfect map ¢: X—Y from
a space X onto a pseudoparacompact (resp. pseudo-Lindeldf) space Y,
then X is pseudoparacompact (resp. pseudo-Lindelof).

In §2, by virtue of recent results obtained by Morita, we shall
prove the following

Theorem 3. Let o: X—Y be an open quasi-perfect map from a
space X onto a space Y.

Q) If pY is locally compact and paracompact, then so is pX.

(2) If uY is g-compact, then so is pX.

§1. DProof of Theorem 2. Before proving Theorem 2, we shall
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need some preliminalies. For a space X, let x be the finest uniformity
of X and v the uniformity of all countable normal coverings of X.

Lemma 1.1 (Howes [4]). A space X is pseudoparacompact (resp.
pseudo-Lindelof) iff for any weakly Cauchy filter §F with respect to p
(resp. v) there exists a Cauchy filter & with respect to p containing F.

Here a filter § in X is called weakly Cauchy with respect to a uni-
formity ¢ of X if for any uniform cover U1 in p there is a filter ® in X
containing ¥ such that GC U holds for some G ¢ ® and U e 1l.

Let C(X) be the family of all non-empty compact subsets of a given
space X. Following the convention of [7], we topologize C(X) with the
Vietoris topology ; for a finite collection {U,, U,, - -, U,} of open sets,
KU, U, ---,U,> will denote the subset of C(X) to which the compact
set K belongs iff K| J; U; and KNU;#0 fori=1,2, --.,n. Open sets
in C(X) are unions of an arbitrary number of these sets.

Lemma 1.2 (Michael [T]). C(X) is completely regular and T, iff X
is completely regular and T,.

A space X is called topologically complete if p X=X (cf. [8].

Lemma 1.3 (Zenor [10]). (C(X) is topologically complete iff X is
topologically complete.

A subset F of a space X ig called relatively pseudocompact if every
real-valued continuous function over X is bounded on F'.

Lemma 1.4 (Dykes [11). If F is a relatively pseudocompact subset
of a topologically complete space X, then clyF' is compact.

A map ¢: X—Y is called a Z-map if the image of each zero-set in
X is closed in Y. In [6], Isiwata extended the notion of Z-maps; a
map ¢: X—Y is a WZ-map if cl,xo ' (¥)=8() (%) for every ¥ in Y,
where B(p) denotes the Stone extension of ¢.

The following lemma is useful.

Lemma 1.5. Let ¢o: X—Y be a map from X onto Y such that
@~ U(y) 1s relatively pseudocompact for each y in Y. ForyinY, let us
put p(Y)=clxp™'(W). If ¢ is an open WZ-map, then the mapping @
from Y into C(pX) is continuous. Conversely if @ is conlinuous then
o 18 open, and moreover if X is normal then ¢ is closed.

Proof. Clearly ¢ maps Y into C(uX) by Lemma 1.4. Let ¢ be an
open WZ-map, and for y in Y let ¢(y) e<U,, U,, - - -, U,», where U, is
an open set in xX for each ¢. If we choose an open set U’ in X such
that U’ N pX=\J; U;, then the set V=, (U, N X) N (BY — pp(BX — U"))
is an open set in Y containing y since ¢ is an open WZ-map and
cl,x¢'(y) is compact. Moreover we easily see ¢(V)C<U, U,, - -+, Uy).
Therefore ¢ is continuous. Conversely let us assume ¢ is continuous.
Let U be an open set in X and choose an open set U’ in xX such that
U'NX=U. Theno(0)=¢""KU,pX>N@(Y)). Hence¢pisopen. Now,
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let us assume X is normal. For a closed set F in X, let us put
F={KeC@X)|cl,xF NK=+0}. Then ¥ is closed in C(xX), and o(F)
=¢"(FN@Y)). Therefore ¢ is closed. This proves Lemma 1.5.

Theorem 2 is an immediate consequence of the following

Theorem 4. Let ¢: X—Y be an open WZ-map from o space X
onto a pseudoparacompact (resp. pseudo-Lindelof) space Y such that
o~ (y) is relatively pseudocompact for each y in Y, then X is pseudo-
paracompact (resp. pseudo-Lindelof).

Proof. Let § be a weakly Cauchy filter in X with respect to p
(resp. v). Then the filter (%) is weakly Cauchy with respect to u
(resp. v) since ¢ is continuous. Moreover since Y is pseudoparacompact
(resp. pseudo-Lindelof), by Lemma 1.1 there exists a Cauchy filter &
in Y with respect to g, which contains ¢(%). Let ¢ be a map as in
Lemma 1.5, then ¢(®) is also a Cauchy filter in C(xX) with respect to
p since ¢ is continuous. Therefore since C(¢X) is topologically complete
by Lemma 1.3, 3(®) converges to some K in C(p¢X). Let us suppose
that N{clxF|FeF NK=0. Since K is compact, it follows that
cl,xFFNK=0 for some F ¢ . This means that K e (uX—cl,»F). Since
@(®) converges to K, there exists G in & such that ¢(G) C (uX —cl,  F>.
Then it is easily seen that ¢'GCX—F. But this contradicts that
o(FC®. Hence F has a cluster point in K. This shows that § is
contained in a Cauchy filter in X with respect to x. Therefore X is
pseudoparacompact (resp. pseudo-Lindelof) by Lemma 1.1. The proof
is completed.

Remark. Under the map ¢: X—Y given in Theorem 4, let us
assume that Y is pseudocompact and consider % in the proof above to
be a weakly Cauchy filter with respect to the uniformity of all finite
normal coverings, then under the same argument as above, by ([4],
Theorem 38) we can conclude that X is pseudocompact. This is an
another proof of ([6], Theorem 4.2).

Asg an application of Theorem 4 we have

Theorem 5. Let X be a pseudocompact space and Y a first coun-
table and pseudoparacompact (resp. pseudo-Lindelof) space. Then
X XY is pseudoparacompact (resp. pseudo-Lindeldf).

Proof. Since the projection X X Y—Y is a Z-map by ([6], Theorem
2.1), this follows from Theorem 4.

§2. Proof of Theorem 3. Theorem 3 is a direct consequence of
the following lemma and theorems which are due to Morita.

Lemma 2.1. Let ¢: X—Y be an open WZ-map from X onto Y
such that ¢~ '(y) is relatively pseudocompact for each y in Y. If Fisa
relatively pseudocompact subset of Y, then ¢ '(F') is relatively pseudo-
compact.
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Proof. For any real-valued continuous function f on X, let us

define real-valued functions f* and f*on Y by

S @ =sup {f(@) |z o'W}, Sy =inf {f(®)|x e o' ()}
Then f¢ and f* are continuous by ([6], Lemma 4.1) and bounded on F'.
Hence f is bounded on ¢~ '(F) and this proves Lemma 2.1.

Theorem 6 (Morita [9]). For a space X, pX is locally compact
and paracompact iff there exists a normal open covering of X consist-
g of relatively pseudocompact subsets.

Theorem 7 (Morita). For a space X, uX is g-compact iff X s
expressed as a union of a countable number of relatively pseudocompact
subsets.

Proof. Let pX=U{K;|i=1,2, ..}, where each K, is compact.
Then X =\ J; (K;NX) and since X is C-embedded in X by ([8], Theorem
2.4), K;NX is relatively pseudocompact. Conversely, suppose that
X=U{F,;|i=1,2, ...}, where each F,; is relatively pseudocompact.
Let us put Y=, cl,xF;. Then XCYCpX and Y is a g-compact space
by Lemma 1.4. Therefore by ([8], Theorem 2.5) it holds that ¥ =puX.
Hence pX is g-compact and this completes the proof of Theorem 7.
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