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This paper contains two theorems. First we estimate the order of
Fourier coefficients of unction of Wiener’s class V which is strictly
larger class than that o the class o unctions o bounded variation.
We have been able to find out the best constant which terms out to be
V(f)u-21/q in our case. The second theorem concerns about how many
Fourier coefficients can have exactly the order n-/.

1o Let f be a real valued 2u-periodic unction defined on [0, 2u]
and let O--to_t_t_... _t--2z be a partition o [0,2z]. We write,
or l_pc,

(1) V,(f)--sup{= [f(t)-- f(t_),’} 1/

where sup is aken over all partitions o [0, 2]. We say hat a unetion

f belongs to V or f is the unetion o p-th variation i V(f)< oo.

In terms o Wiener [5] we denote the class o all 2-periodie unetions
o p-th variation on the segment [0, 2] by Vv. We call Vv(f) the p-h
otal variation o f. It can easily be verified that
( 2 ) V Vq (l_<p < q< oo)

For p-1, Vx is the class o functions o boundedis a strict inclusion.
variation. Let

la + (a= cos nx + b sin nx)( 3
2

be a Fourier series of f. In the case V the following theorem is well
known [1] (see also [7]).

Theorem A. If f belongs to V then
( 4 ) [a[_< V(f)(zn)-; [b[_< V(f)(zrn) -1

for all nl, where V(f) is the first total variation of f over [0, 2].
Recently M. Taibleson [3] has proved a weaker orm o Theorem A

by an elementary method (see also [1] page 210). M. and S. Izumi [2]
have given another elementary proo of Theorem A with the best con-
stant V(f)z- in (4). We extend Theorem A in the ollowing way.

Theorem 1. If f belongs to V (l_poo) then

(5) {[, an[ Vp(f)zc-121/qn-/p
b

_
V(f)=-2/n /
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for all nl, where Vp(f) denotes the p-th total variation of f over
[0, 2] and 1/p+l/q-1.

Proof of Theorem 1. Since

7an- f(x) cos nx dx- f(x) cos nx dx
J-/2n

= (--1) f x+ cosnxdx
J-/2n(6) :o

=/i,n [1 {f (x + 2] ) f(x + (2] + 1)/n)} 1 cos nx dx
k=0 n

{f(x+(2]+ 1)/n)--f(x+(2]+2)/n)} cos nx dx
J-12n Lj=O

and hence we can write

( 7 ) 2[an ]< f x + f(x + (k + 1)/n) cos nx dx.
d-z/2n L k=o

But cos nx 0 in [-- /2n, /2n], applying HSlder’s inequality on the
integrand of (7) we get,

--f:/:;n {: (X k 1)=/n)}
X 1 cos nx dx

or 1/p + 1 /q- 1. But using (1) above we get
/2n

2z a V(f)(2n)VJ_/_ cos nx dx V(f)(2n)/2 /n.

This gives the first inequality o (5). The second is also similarly proved..
Remark 1. Since in the case p-1 in our Theorem 1, q becomes in-

finit and hence the constant V(f)=-2v reduces to V(f)- which is
the best constant in Theorem A. Hence V(f)-2v is the best constant
in our Theorem 1.

2. Now we study how many Fourier coefficients can have exactly
the order n-/ in the ollowing

Theorem 2. If f belongs to V(Ip) and {n} denotes the
sequence of n such that pA/n1/ where A is a fixed constant and p
a+b then

N

n O(n) (N).
k=l

For the proof o above theorem we shall need the following lemma
which is due to Young [6].

Lemma (Young). If f belongs to V (lp) then

(8, f) su f(t + h) f(t) gt /V(f).

Proof of Theorem 2. Case 1. Suppose lp2. Then rom
hypothesis and Theorem 1, we can conclude
( 8 cn;/(f) cn;/ (-- 1, 2, ).
We can write rom (3),
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( 9 ) f(t + h)--f(t--h)2 (b cos kt--a sin kt) sin kh.

Since 1/p + 1/q- 1, using the Hausdorff inequality, (9) gives

p sin khl
where % is a constant depending only on p. Therefore

n- : kp-O o ,
Using (9) and lemma o Young, we get

N

E nX-/)--O(n-/))
k=l

That is

n 0(n) (N-c).

Case 2. Suppose 2<_p c. Using Parseval equation on (9) we get

4 p sin kh -f(t + h) f(t- h)

% f(t + h) f(t-- h)] 0((2h , f)) (h + 0).
Hence we get

Now using lemma of Young and by given hypothesis we get

(10) (-1/ 0(-/) (N).
=1

S. B. Steekin [4] has shown that the above condition (10) implies

0() (N.
=1

Hence heorem 2 is completely proved.
Remark Z. he above theorem is not true for p--1 (for the class

of functions of bounded variation). Nor the function

f(t)- sin t
=1

belongs to the class V but the condition

0( (N
=1

does not satisfy for- (-1, 2, , ...).
Nrom heorem 2 we can also deduce the following;
Corollary. The eqeee {} i Theorem ea be plit ito

ite mber o Zaear beqeee (see [4] page 88).
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