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This paper contains two theorems. First we estimate the order of
Fourier coefficients of function of Wiener’s class ¥V, which is strictly
larger class than that of the class of functions of bounded variation.
We have been able to find out the best constant which terms out to be
V,(f)z~'2¥7 in our case. The second theorem concerns about how many
Fourier coefficients can have exactly the order n~"?.

1. Let f be a real valued 2z-periodic function defined on [0, 2]
and let 0=%,<t,<t,<-...<t,=2r be a partition of [0,2z]. We write,
for 1<p<oco,

(1) Vo(H=sup {317t — k)]

where sup is taken over all partitions of [0,27]. We say that a function
f belongs to V, or f is the function of p-th variation if V,(f)<co.
In terms of Wiener [5] we denote the class of all 2z-periodic functions
of p-th variation on the segment [0, 2z] by V,. We call V,(f) the p-th
total variation of f. It can easily be verified that

(2) V,cV, (1<p<g<oo)

is a strict inclusion. For p=1, V, is the class of functions of bounded
variation. Let

(3) %ao-i- i (a, cos nx+ b, sin nx)
n=1

be a Fourier series of f. In the case V, the following theorem is well
known [1] (see also [7]).
Theorem A. If f belongs to V, then
(4) [0, | <V ()an)~t; 10, < V() mn)?
for all n>1, where V,(f) is the first total variation of f over [0,2x].
Recently M. Taibleson [3] has proved a weaker form of Theorem A
by an elementary method (see also [1] page 210). M. and S. Izumi [2]
have given another elementary proof of Theorem A with the best con-
stant V,(f)z ' in (4). We extend Theorem A in the following way.
Theorem 1. If f belongs to V, A1<p<<oo) then
(5) fles S Vo2
[0, | <V () 12V 1P
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for all n>1, where V,(f) denotes the p-th total variation of f over
[0,27] and 1/p+1/g=1.
Proof of Theorem 1. Since

T—n/2n

nan_r f(@) cos nx dx——J_ ., f(x) cos nx dx
=5 [

—x/2n

__me [l { ( 2fn ) —fle+ @5+ 1)71'/1’&)}] cos nx dx

6 f(x+£n—) cosnx dx

—z/2n
o j-"/zn [2‘) {f@+@j+Dr/n)— fle+ (2j+2)rc/n)}] cos na da

and hence we can write

/2N an
(1) 2n|an|<j [

—n/2n

f(x-l-k—”) f(x+(k+1)n/n)(] cos nx dx.

But cosnx>0 in [— 7:/271,, n/2n], applying Holder’s inequality on the
integrand of (7) we get,

2ea,i< [ [{z f(x+—) f(x+(lc+1)7t/n)‘ 1

—z/2n k=0

{2%_‘1 1‘1} ]cos nx dx

for 1/p+1/g=1. But using (1) above we get
2r|a,|< Vp(f)(2n)1/an/2n cos nx de ="V ,(f)(2n)"2/n.

—r/2n

This gives the first inequality of (5). The second is also similarly proved.

Remark 1. Since in the case p=1 in our Theorem 1, ¢ becomes in-
finity and hence the constant V,(f)z~'2"¢ reduces to V,(f)=~! which is
the best constant in Theorem A. Hence V,(f)z 7’2" is the best constant
in our Theorem 1.

2. Now we study how many Fourier coefficients can have exactly
the order »~'/? in the following;

Theorem 2. If f belongs to V,(1<p<oo) and {n,} denotes the
sequence of n such that p,>A[n"? where A is a fixed constant and p,
=+/a% 0% then

N
k; 1, =0(ny) (N—c0).
For the proof of above theorem we shall need the following lemma
which is due to Young [6].
Lemma (Young). If f belongs to V, A<p<co) then
2T 1/
0,6, =sup ([ 17+ 0 — sty at] <oV, (.

Proof of Theorem 2. Case 1. Suppose 1<p<2. Then from
hypothesis and Theorem 1, we can conclude
(8) Clnil/pﬁpnk(f)ﬁcznil/p (k:l, 2, v ')~
We can write from (3),
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(9) FE+R) — FE—h)~2 5] (by cos kt—a, sin kt) sin kh.
k=1
Since 1/p+1/q=1, using the Hausdorff inequality, (9) gives
o 1/q
(2 otlsin ki) " e, |76+ ) — 7= ], <cy0,(2h), 1)
where ¢, is a constant depending only on p. Therefore
we $ in=o{us(Z, 7).
k=1 n
Using (9) and lemma of Young, we get
N
;; ni-YPe=Q(ng-v9),
That is
N
kZin’“:O(nN) (N—0).
Case 2. Suppose 2<p< . Using Parseval equation on (9) we get
o 1/2
(47 23 eb sin ) =] D) — FE— D),

<l fE+R) = FE—1) [, =0,(2R], 1)) (h—+0).
Hence we get

v feasifa(2).)) o

k=1
Now using lemma of Young and by given hypothesis we get

(10) i NP = (i -VP) (N—00).
k=1

S. B. Steckin [4] has shown that the above condition (10) implies

N

kz;;nkzo(”zv) (N—o0).
Hence Theorem 2 is completely proved.

Remark 2. The above theorem is not true for p=1 (for the class

of functions of bounded variation). For the function

& sin kt
JO=2 A

belongs to the class V, but the condition

N
k; N =0(ny) (N—o0)
does not satisfy for n,=k (k=1,2,3, -..).
From Theorem 2 we can also deduce the following ;
Corollary. The sequence {n,} in Theorem 2 can be split into a
finite number of lacunary subsequences (see [4] page 388).
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