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89. Note on an Ergodic Theorem

By Shigeru TSURUMI
Mathematical Institute, Tokyo Metropolitan University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., June 12, 1954)

1. Let (X,3B,m) be a measure space such that X is a set, B
is a Borel field of subsets of X, and m is a o-finite measure defined
on B. A single valued (not necessarily one to one) transformation
T of X onto itself is called measurable if both T and its inverse
transformation 7! transform every set of B to a set of B. The
measurable transformation T' is called non-singular (with respect to
m) if Ee®B and m(E)=0 imply m(TE)=m(T~'E)=0, and is called
incompressible (with respect to m) if Ee®B and T-'ED E imply
m(T'E—E)=0. Two measures 2 and p defined on B are called
equivalent if Fe®B and A(E)=0 imply up(E)=0 and conversely. A
measure p on B is said to be tnvariant under the measurable trans-
formation T (or the measurable transformation T is said to be
measure-preserving with respect to ) if w(T'E)=w(E) for any set
E of B.

If T is measurable and non-singular, we put 8,={T"'E; F e 3B}.
Then, from the Radon-Nikodym theorem, there exists a measurable
function w(x) such that

m(TE) = f w(@)dm

for every set E of B,. Let us now put
wo@)=1, wu(@)=w®)---wT" 'z)
for any point # of X and for »=1,2,... . Then we obtain the
recurrence formula:
Wy (@) =w, (1) - ()
for %,7=0,1,2, ... .

Y. N. Dowker [1]® has offered the following question concern-
ing the extension of Halmos’ ergodic theorem [2] for one to one
transformation to the case of a single valued transformation: wheth-
er, for a single valued, measurable, non-singular transformation
T of X onto itself, the condition that T is incompressible (or some
similar condition) yields that, for any measurable function g(x)

which is positive almost everywhere, the series > g(T"x)w;(x)
2=0
diverges almost everywhere?

1) Numbers in square brackets refer to the references at the end of this paper.
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The purpose of this note is to show that even if we assume
the existence of a finite invariant measure equivalent to m (which
is obviously a stronger assumption than the incompressibility of T'),
the above series does not necessarily diverge almost everywhere.

2. In the following, we shall show two examples.
Example 1. Let us consider the collection of the linear inter-
vals J, s and J;’s in the (s, f)-plane such that
Jx=1{(5k); 0=s<1/2%%},
Jop=1{(s,k); 1/2%"' <5< 1/2%},
Jk:Jx,la U J; 2,k
for k=0,1,2,... . Let (X,3B,m) be the measure space such that
X is the union of all J,’s, B is the class of Lebesgue measurable
subsets of X, and m is the ordinary linear Lebesgue measure on 3.

Then (X, B, m) is obviously a finite measure space. We now define
a transformation 7' by

T(s, t)=(2%*1s, 0), if (s,t) € i
:<; [S"‘éi“ :ly k+1>, if (S, t) € Jon
for £k=0,1,2, ... .
Then we get

(i) T is a single valued, measurable, and non-singular trans-
Jormation of X onto wtself;
(ii) there exists a finite invariant measure equivalent to m;

(iii) the series iwn((s, t)) converges almost everywhere.
2=0
The property (i) follows obviously from the definition of 7.
Proof of (ii): We put for any set E of B
pE) =23 28 m(E () Jy).
Then p is obviously a measure equivalent to m and
< 1 _
M= uI=3] ), =2.
Next, we shall show that p is invariant under 7. For any set
E of B, we have that
T— I(Eﬂ JO)CICLJOJI,I:)
T~ EN I S Jp
for k=1,2, ..., and

/‘[T_I(Eﬂ ch)] :,“(EU Jk)
for £=0,1,2,... . Thus we get for any set E of B
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W B)= [T J ENIN] =3 u(THEU J)]
=SV u(BN J)=uE),

which is the required.
Proof of (iii): From the definition of w, it is easy to see that

w@=5, it 60D

—_— 1 ?0'
=g if (s, t)e ;L'o']z"“‘

We shall now define a new single valued transformation ¢ of
J, onto itself by

»((s, 0))=({2s}, 0),
where {x} denotes the fractional part of x. Then we have, for
any point (s, 0) of J, and »=0,1,2, ...,
w(T™(s, 0))=w(e"(s, 0)),

(1) wa((8, 0))=w((s, 0))-w(T(s, 0))- - -w(T""'(s, 0))

=w((s, 0))-w(p(s, 0))- - -w(e" (s, 0)).
Hence, let f be the characteristic function of J,, then we have
by Raikov’s theorem [3] that for almost all points (s, 0) of J,

N == 1
(2) lim | 3 f (s, 0)= [ fdm=m(J,0= .
nr0 N, i=0 7o 2
Now we have for any point (s, 0) of J,
n-1
(3) g})f (#'(s, 0))
= [ Number of elements ©’s such that ¢'(s, 0) € J,,, for 0=<t=<n—1]

=[Number of elements i’s such that w(p'(s, 0))=38/2 for 0=i<n—1],
and further, for any point (s, 0) of J,, and 4=0,1,2, ...,

w(gh(s, 0))= ; :

Thus, from (1), (2) and (8), it follows that for almost all points

(s,0) of J,

wa((s, 0)=0 ((g ; >>: 0 <( % ))
so that
4) 106, 0)) < 0.

On the other hand, for any point (s,?) of X, there exists a positive
integer (s, t) such that
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(5) Tos0(s, ) € J,.
Then we have by the recurrence formula that for any point (s, ?)
of X

g wy((s, 1)) = 1’(7':2:)'1 wa((s, 1)) + ”2.:0 Wt pcs,05((S5 £))

( 6 ) p(s,)—1 oo
=" (5, )+ 2T, 6) Wy, ).

Thus, from (4), (5) and (6), we get

S wa((s ) < o0

almost everywhere on X.
Remark. We notice that, in case m is finite as in Example 1,

the series :\:‘wn(:v) cannot be uniformly bounded. In fact, if we

n=0

assume that the series ﬁwn(x) is uniformly bounded and K is its
n=0
majorant, then we have

o >K-m(X)= f py wa@)m=3] f wa@)dm

=3 [ wa@)dm=3 m(X)= oo,
=0 n=0
. . T—”X
which is a contradiction.

However it will be shown in the following example that the
above series may be uniformly bounded for some o-finite (not finite)
measure space and some transformation.

Example 2. Let us consider the collection of the linear inter-

vals J,;’s and J.’s in the (s, ¢)-plane such that

Jiw = {(8,k); 0=s< 27,

Jor = {(8,k); 2FP<s < 204251,

Jie= (s, =k); 0=s<1/2%},

o= (s, —k); 1/2% < s < 1/2%41/2%+1)
for £=1,2, ..., and

Jio=1{(0); 0=s<1/2},

Joo = {(5,0); 1/2=s<1/2+1/2},
and

J/c = J1,lc Ulea
for k=0, =1, =2, ... . Let (X,%®B,m) be the measure space such
that X is the union of all J,’s, B is the class of Lebesgue measurable
subsets of X, and m is the ordinary linear Lebesgue measure. Then
(X, B, m) is a o-finite (not finite) measure space. We now define
a transformation T by
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T(s, t)=(6s,k+1), if (s,t) ey, for k=1,2, ...,
=(.§.[s—zfc-2j, k-l), if (s,2) € Jo for £=2,8, ...,
=( ._,;,o), if (s,) € Jy,
=(3s, 1), if (s, t) € Jy,0s
=(%[ —;.:l, —-1>, if (s, %) € Jyy0»
=(4s, 0), if (s,2) € Jy, s,
=(6s, —k+1), if (s, %) € J;,_ for £=2,8, ...,
=(._2~[s—,,2,12i.],—k—1), if (s,8) € Jy s for k=1,2, ... .

Then we get

(i) T is a single valued, measurable, and non-singulor trans-
Jormation of X onto itself;

(ii) there exists a finite tnvariant measure equivalent to m ;
(iii) the series i)'w,,,((s, ) s uniformly bounded on X.
The proof of (i)”;ollows directly from the definition of 7.
Proof of (ii): We put for any set E of B

WE) =3 BN T +mEN T+ 32 m(B0) T,

k=1
Then it can be proved similarly as Example 1 that x is a finite
invariant measure on B equivalent to m.
Proof of (iii): From the definition of w, it is easy to see that

w(@, ) =2, if (8¢ Uil UksUU U0

> Af (s,8) € S U dros

o ot oo

, if (s, 0)edy Uy

Thus we have

oo oo 4 n_—
Stwa((s, H<1+3] ( 5,,) =5

almost everywhere on X.
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