572 [Vol. 30,

122. A Note on f-completeness

By Shouro Kasahara

Kobe University

(Comm. by K. Kunugi, M.J.A., July 12, 1954)

In a recent paper [2], A. W. Ingleton introduced a concept, spherically completeness, which is important for the extension of continuous linear mappings of a non-Archimedean normed space into another one. For a locally flat topological linear space whose topology is defined by a family of non-Archimedean semi-norms, the author has given a concept, f-completeness [3], on the extension property.

It is our purpose in this note to prove some conspicuous properties on *f*-completeness.

Throughout this note, we will denote by K a non-Archimedean valued field of which the valuation v is non-trivial, and assume that the locally flat linear spaces have the same K as the underlying field of scalars, and moreover by f-complete space we shall mean a locally flat linear space which is f-complete with respect to each of the non-Archimedean semi-norms defining the topology.

Let (E_{ι}) be a family of locally flat linear spaces, and let us consider the product space $F = \Pi_{\iota} E_{\iota}$, and denote by f_{ι} the projection of F to E_{ι} . Then it is clear that the topology of the linear space F is defined by the family of non-Archimedean semi-norms $p_{\iota} \circ f_{\iota}$, where for any ι , p_{α} runs over the family of non-Archimedean semi-norms defining the topology of E_{ι} . That is, the product space of a family of locally flat linear spaces is locally flat.

The following proposition can be readily verified.

Proposition 1. (a) The product of a family of f-complete spaces is also f-complete. (b) If W is a closed subspace of an f-complete space E, then the quotient space E/W is f-complete.

The part (a) of the proposition is clear.

Let p^* be the non-Archimedean semi-norm of E/W corresponding to a non-Archimedean semi-norm p of the space E. Then the inverse image of any p^* -flat variety in E/W by the canonical mapping π of E onto E/W is a p-flat variety in E, and hence the part (b) is clear.

Proposition 2. Let W be an f-complete subspace of a Hausdorff linear space E; then W admits a topological supplement, and is therefore closed.

¹⁾ In this note "subspace" always means "linear subspace".

²⁾ Cf. (1) p. 16.

It follows from the f-completeness of W that the identity maping of W onto itself is extended to a mapping: $E \to W$; and hence W admits a topological supplement, and is closed since E is Hausdorff space.

Proposition 3. If W is a closed subspace of a locally flat linear space E, and if W and E/W are both f-complete, then E is f-complete.

Let $\{C_{\varepsilon}\}$ be a collection of p-flat varieties in E totally ordered by inclusion, and let us employ the notation in the proof of Proposition 1. Then it is clear that the image of any p-flat variety by the canonical mapping π is a p^* -flat variety in E/W, and the collection $\{\pi(C_{\varepsilon})\}$ is a totally ordered set by inclusion. It follows that there is a common point $\pi(x_0)$ to all $\pi(C_{\varepsilon})$; that is to say, $x_0 + W$ meets C_{ε} for all ε . Thus we have $(C_{\varepsilon} - x_0) \cap W \neq \phi$.

Whereas $\{C_{\varepsilon}-x_0\}$ is a totally ordered set by inclusion, and a fortiori $\{(C_{\varepsilon}-x_0) \cap W\}$ is also; and since $(C_{\varepsilon}-x_0) \cap W$ is a $p \mid W$ -flat variety in W, there exists a y_0 in W such that y_0 is contained in every $(C_{\varepsilon}-x_0) \cap W$. Thus x_0+y_0 is in every C_{ε} , proving the proposition.

Proposition 4. Let E be a non-Archimedean normed space over K. If E is spherically complete, then it is complete.

Let \mathfrak{F} be a Cauchy filter on E. For every neighborhood N of 0 in E and every set $A \in \mathfrak{F}$, let us consider the set A+N. Then, it is not hard to see that these sets form a Cauchy filter. In fact, for any neighborhood N of 0, there is an $A \in \mathfrak{F}$ such that for any x and y in A, $x-y \in N$; and hence A+N=x+N. Now since the family $\{x+N\}$ is a nest of spheres (cf. [2]) on E, it has a common point, which is a limit of the filter \mathfrak{F} .

Proposition 5. If E is a non-Archimedean normed space over K, and if it has the extension property, then every closed subspace of E has the extension property.

Let W be a closed subspace of E; we shall show that it is spherically complete.

Any nest of spheres \mathfrak{S} on W may be considered as the set consisting of the intersections of W and each element of a nest of spheres \mathfrak{S}_0 on E; but then, by the assumption, \mathfrak{S}_0 has a common point x_0 in E.

For the sake of convenience, we denote by U_{ε} the set of point for which $||x|| \leq \varepsilon$, where $|| \ ||$ is the non-Archimedean norm. Then, every element of \mathfrak{S}_0 is described in the form: $x_0 + U_{\varepsilon}$. Moreover, let us denote by δ the greatest lower bound of ε corresponding to each element of \mathfrak{S}_0 .

If $\delta=0$, the element x_0 is clearly contained in W, since the

intersection of any neighborhood of x_0 and the closed subspace W is nonvoid.

On the other hand, if $\delta > 0$, then for any $\lambda > \delta$, there is an $x \in W$ such that $x \in x_0 + U_\lambda$, i.e., $(x_0 + U_\lambda) \cap W \neq \phi$. Since W is closed, we have $(x_0 + U_\delta) \cap W \neq \phi$. Thus the proof is complete.

Proposition 6. If W is an f-complete subspace of a locally flat linear space E, then every continuous mapping of W into any topological space can be extended to a continuous mapping whose domain is the whole of E.

In fact, since W is f-complete, the identity mapping of W onto itself is extended to a mapping of E into W: W is a retract of E.

Let E and F be two locally flat linear spaces with the family of non-Archimedean semi-norms (p_{α}) and (q_{β}) respectively. It has shown in $\lceil (3)$, lemma 2] that a linear mapping u of E into F is continuous if and only if, for any $q \in (q_{\beta})$, there exist a $p \in (p_{\alpha})$ and a positive number a such that

$$q(u(x)) \leq a \cdot p(x)$$

for all x in E.

Now regarding to such a linear mapping, we have

Proposition 7. Let E and F be as above, and W an f-complete subspace of E. Then every continuous linear mapping u of W into F can be extended to a linear mapping of E into F satisfying the inequality (*) for same p and a.

In fact, if we denote by I^* the extension to E of the identity mapping of W, we have $p(I^*(x)) \leq p(x)$ for any $p \in (p_a)$ and $x \in E$. Let $u^* = u \circ I^*$; then evidently u^* is linear and $u^* \mid W = u$. Now, since u is continuous, for any $q \in (q_{\beta})$, there exist a $p \in (p_a)$ and a positive number a and (*) holds for all x in W. It remains to prove the inequality (*) for u^* . For any x in E, we have

$$q(u^*(x)) = q(u \circ I^*(x)) \leq a \cdot p(I^*(x)),$$

$$q(u^*(x)) \leq a \cdot p(x).$$

Let us now consider the field K instead of F; then the lemma 2 in [3] may be stated as follows: a linear function f defined on E is continuous if and only if, for any $p \in (p_a)$ there is a positive number a such that

$$(**) v(f(x)) \leq a \cdot p(x)$$

for all $x \in E$.

and hence

As an immediate corollary of Proposition 7, we obtain

Proposition 8. Let W be an f-complete subspace of a locally flat linear space E. Then every continuous linear function f defined on W can be extended to a linear function on the whole of E, satisfying the inequality (**) for same a.

Moreover, in view of Proposition 5, the following is apparent.

Proposition 9. Let E be a non-Archimedean normed space having the extension property, and W a closed subspace of E. Then, every continuous linear function defined on W possesses an extension of the same norm whose domain is the whole of E.

References

- [1] Bourbaki, N.: Éléments de Mathématiques, Livre V, Chaps. I et II. Paris (1953).
- [2] Ingleton, A.W.: The Hahn-Banach theorem for non-Archimedean-valued fields, Proc. Cambridge Philos. Soc., 48, 41-45 (1952).
- [3] Kasahara, S.: A note on locally flat topological linear spaces, to appear in Math. Japonicae, 3, No. 2.