114. On a Certain Type of Analytic Fiber Bundles

By Shigeo Nakano
Mathematical Institute, Kyoto University
(Comm. by Z. Suetuna, M.J.A., July 12, 1954)

In a lecture at University of Chicago (cf. [1]), A. Weil developed the theory of algebraic fiber varieties. Among others, he treated fiber varieties over a non-singular algebraic curve, which have the projective straight line as fibers and the group of affine transformations as the structure group. He classified these fiber varieties in a purely algebraic way (and in the case of a universal domain of any characteristic). In this note we shall show that his second invariant admits a simple and natural interpretation, as far as complex analytic fiber bundles are concerned.

1. Let \boldsymbol{V} be a compact complex analytic manifold. A fiber bundle \mathfrak{B} to be considered here is defined in terms of a finite open covering $\left\{U_{j}\right\}$ of V, and a system of holomorphic mappings $s_{j k}$ from $U_{j} \frown U_{k}$ into G; the group of the affine transformations of a complex affine straight line \boldsymbol{C}. Here the mappings $s_{j k}$ satisfy the relation

$$
s_{j k} \cdot s_{k l}=s_{j l} \quad \text { in } U_{j} \frown U_{k} \frown U_{l} .
$$

If we write

$$
s_{j k} \cdot \zeta=a_{j k} \zeta+b_{j k} \quad \text { for } \zeta \in \boldsymbol{C}
$$

then $a_{j k}$ and $b_{j k}$ are holomorphic functions in $U_{j} \frown U_{k}$ and

$$
\left\{\begin{array}{l}
a_{j k} \cdot a_{k t}=a_{s t} \tag{2}\\
a_{j k} \cdot b_{k l}+b_{j k}=b_{j t},
\end{array}\right.
$$

while \mathfrak{B} may be described in terms of "coordinates" $\left(z, \zeta_{j}\right)\left(z \in U_{j}\right.$ and $\zeta_{j} \in \boldsymbol{C}$), with the relation

$$
\left(z, \zeta_{j}\right) \sim\left(z^{\prime}, \zeta_{k}\right) \text { if and only if }\left\{\begin{array}{l}
z=z^{\prime} \in U_{j} \cap U_{k} \tag{3}\\
\zeta_{j}=a_{j k}(z) \zeta_{k}+b_{j k}(z)
\end{array}\right.
$$

Two systems $s_{j k k}=\left(a_{j k}, b_{j k}\right)$ and $s_{j k}^{\prime}=\left(a_{j k}^{\prime}, b_{j k}^{\prime}\right)$ define the same bundle if and only if

$$
s_{j k}^{\prime}=t_{j}^{-1} s_{j k} t_{k}
$$

where each $t_{j}=\left(c_{j}, d_{j}\right)$ is a holomorphic mapping of U_{j} into G. In terms of a, b, c and d, this condition is expressed as

$$
\left\{\begin{array}{l}
a_{j k}^{\prime}=c_{j}^{-1} \cdot a_{j k k} \cdot c_{k} \tag{4}\\
b_{j k}^{\prime}=c_{j}^{-1}\left(a_{j k} d_{k}+b_{j k}-d_{j}\right) .
\end{array}\right.
$$

If \mathfrak{B} is defined by $\left(a_{j k}, b_{j k}\right)$, then (2) shows that $\left(a_{j k}\right)$ defines a complex line bundle \mathfrak{A} (abbreviation: C.L.B.) in the sense of
K. Kodaira. (Cf. [2].) Then (4) shows that \mathfrak{H} is uniquely determined by \mathfrak{B}. \mathfrak{H} shall be called, after Weil, the C.L.B. subordinate to \mathfrak{B}.

In order that \mathfrak{B} and \mathfrak{B}^{\prime} should be equivalent, it is clear that the subordinate C.L.B.'s must be equivalent. Hence we assume that \mathfrak{B} and \mathfrak{B}^{\prime} are defined by $\left(\alpha_{j k}, b_{j k}\right)$ and $\left(a_{j k}, b_{j k}^{\prime}\right)$ respectively, and seek for a property which distinguishes \mathfrak{B} from \mathfrak{B}^{\prime}.

The condition (4) becomes, in this case,

$$
\begin{equation*}
b_{j k}^{\prime}=c^{-1}\left(a_{j k} d_{k}+b_{j k}-d_{j}\right), \tag{5}
\end{equation*}
$$

where c is a complex constant, $\neq 0$.
2. We observe that if \mathfrak{B} has a holomorphic cross section, then \mathfrak{B} reduces to its subordinate C.L.B. In fact, a holomorphic cross section is determined by a system $\varphi=\left(\varphi_{j}\right)$ of holomorphic functions φ_{j} in U_{j}, with the property

$$
\varphi_{j}(z)=a_{j k}(z) \varphi_{k}(z)+b_{j k}(z) .
$$

Then by a transformation of the origin

$$
\zeta_{j} \rightarrow \zeta_{j}-\varphi_{j}(z)
$$

in each fiber, we see that \mathfrak{B} is reduced to \mathfrak{N}.
On the other hand, since the fibers are, topologically, nothing but the real Euclidean space of dimension 2, there exist always continuous (and hence differentiable) cross sections.

Take a C^{∞} cross section $\alpha=\left(\alpha_{j}\right)$, then

$$
\alpha_{j}(z, \bar{z})=a_{j k}(z) \cdot \alpha_{k}(z, \bar{z})+b_{j k}(z),
$$

and therefore

$$
\begin{equation*}
d^{\prime \prime} \alpha_{j}=a_{j k} \cdot d^{\prime \prime} \alpha_{k} \tag{6}
\end{equation*}
$$

where $d^{\prime \prime}$ denotes the exterior differentiation with respect to \bar{z}. This shows that the system of C^{∞}-forms $\gamma=\left(d^{\prime \prime} \alpha_{j}\right)$ is a differential form with coefficients in \mathfrak{N}. (Cf. [2].)

Actually, γ is a $d^{\prime \prime}$-closed form, and if we take another cross section $\alpha^{\prime}=\left(\alpha_{j}^{\prime}\right)$ of \mathfrak{B}, then it is clear that

$$
\alpha_{j}^{\prime}=\alpha_{j}+\beta_{j} \quad \text { with } \quad \beta_{j}=a_{j k} \cdot \beta_{k} .
$$

Hence

$$
\gamma^{\prime}=\gamma+d^{\prime \prime} \beta .
$$

This shows that the system $\left(a_{j k}, b_{j k}\right)$ determines an element $\tilde{\gamma}$ of $H^{0,1}(\mathfrak{A})$; the $d^{\prime \prime}$-cohomology group of C^{∞}-forms on \boldsymbol{V} with coefficients in \mathfrak{A} and of type $(0,1)$.

Conversely, let $\tilde{\gamma} \in H^{0,1}(\mathfrak{H})$ be given and let $\gamma=\left(\gamma_{j}\right)$ be a form in the class $\tilde{\gamma}$. Then

$$
d^{\prime \prime} \gamma_{j}=0 \quad \text { in } U_{j}
$$

If we take a refinement $\left\{V_{\lambda}\right\}$ of the covering $\left\{U_{j}\right\}$, and associate
to each λ an index j such that $V_{\lambda} \subset U_{j}$, then we can speak of $a_{\lambda, \mu}$ or γ_{λ} instead of $a_{j k}$ or γ_{j}. If $\left\{V_{\lambda}\right\}$ is sufficiently fine, we can find C^{∞}-functions α_{λ} such that

$$
d^{\prime \prime} \alpha_{\lambda}=\gamma_{\lambda} \quad \text { in } V_{\lambda}
$$

We put

$$
b_{\lambda \mu}=\alpha_{\lambda}-a_{\lambda \mu} \alpha_{\mu},
$$

then $d^{\prime \prime} b_{\lambda \mu}=0$ and $b_{\lambda \mu}$ is holomorphic in $V_{\lambda} \frown V_{\nu}$, and it is easy to see that the system ($a_{\lambda \mu}, b_{\lambda \mu}$) satisfies (2). Hence it defines a \mathfrak{B}, to which \mathfrak{H} is subordinate. It is also clear that the class $\tilde{\gamma}$ is the one which is determined by \mathfrak{B}.

Finally, if we replace ($a_{j k}, b_{j k}$) by another equivalent system $\left(a_{j k}, b_{j k}^{\prime}\right)$, then by (5)

$$
b_{j k}^{\prime}=c^{-1}\left(a_{j k} d_{k}+b_{j k}-d_{j}\right) .
$$

We then replace the system $\left(\alpha_{j}\right)$ of C^{∞}-functions by (α_{j}^{\prime}), where

$$
\alpha_{j}^{\prime}=c^{-1}\left(\alpha_{j}-d_{j}\right),
$$

then

$$
\alpha_{j}^{\prime}=a_{j k} \cdot \alpha_{k}^{\prime}+b_{j k}^{\prime}
$$

and

$$
d^{\prime \prime} \alpha_{j}^{\prime}=c^{-1} d^{\prime \prime} \alpha_{j j}
$$

Hence if we take another expression of \mathfrak{B}, the corresponding element in $H^{0,1}(\mathfrak{l})$ is multiplied by a non-zero constant.

The converse being true, we get
Theorem. Let \mathfrak{H} be a C.L.B. over a compact complex analytic manifold \boldsymbol{V}. Then the fiber bundles of type (3), to which \mathfrak{A} is subordinate, are in one to one correspondence with the points of a projective space \boldsymbol{P}, whose representative cone is $H^{0,1}(\mathfrak{H})$ (with the only one exception of \mathfrak{H} itself).

We shall call the point of \boldsymbol{P} corresponding to \mathfrak{B}, the second invariant of \mathfrak{B}.
3. Now we assume that \boldsymbol{V} is an algebraic variety in a projective space. Then, by a theorem of K. Kodaira and D. C. Spencer (cf. [3], [5]), a C.L.B. 纤 over \boldsymbol{V} can be defined by a divisor \boldsymbol{D} of \boldsymbol{V}. In other words, there is a divisor \boldsymbol{D} and a system of local equations R_{j} of \boldsymbol{D} in U_{j}, such that

$$
\begin{equation*}
a_{j k}=R_{j} / R_{k} . \tag{7}
\end{equation*}
$$

When a bundle \mathfrak{B} is given by $\left(a_{j k}, b_{j k}\right)$, we put

$$
\begin{equation*}
h_{j k}=b_{j k} / R_{j}, \tag{8}
\end{equation*}
$$

then each $h_{j k}$ is a meromorphic function in $U_{j} \cap U_{k}$, with $\left(h_{j k}\right)+\boldsymbol{D}>0$. From (2), it follows that

$$
\left\{\begin{array}{l}
h_{j k}+h_{k j}=0, \tag{9}\\
h_{j k}+h_{k i}+h_{l j}=0 \quad \text { in } U_{j} \frown U_{k} \frown U_{l} .
\end{array}\right.
$$

To show that our second invariant of \mathfrak{B} is identical with Weil's one in the case of a curve, we proceed as follows:

Consider a $d^{\prime \prime}$-closed (0,1)-form $\gamma=\left(\gamma_{j}\right)$ with coefficients in \mathfrak{H} and a $d^{\prime \prime}$-closed ($m, m-1$)-form $\omega=\left(\omega_{j}\right)$ with coefficients in $-\mathfrak{H}$, where m is the dimension of \boldsymbol{V}. We define a product $\langle\gamma, \omega\rangle$ of γ and ω by

$$
\begin{equation*}
\langle\gamma, \omega\rangle=\int_{V} \gamma_{j \wedge} \omega_{j} . \tag{10}
\end{equation*}
$$

Since $\gamma_{j}=a_{j k} \gamma_{k}$ and $\omega_{j}=a_{j k}^{-1} \omega_{k}$, this is well defined.
If γ or ω is $d^{\prime \prime}$-total, then we have $\langle\gamma, \omega\rangle=0$. In fact, if γ_{j} $=d^{\prime \prime} \beta_{j}$ with $\beta_{j}=a_{i k} \beta_{k}$, then

$$
\langle\gamma, \omega\rangle=\int_{V} d^{\prime \prime}\left(\beta_{j} \wedge \omega_{j}\right)=\int_{V} d\left(\beta_{j} \wedge \omega_{j}\right)=0
$$

because $\beta_{j} \wedge \omega_{j}$ is a form on the whole \boldsymbol{V}.
Hence (10) defines the product of the classes of γ and ω and thus defines the product between $H^{0,1}(\mathfrak{l})$ and $H^{m, m-1}(-\mathfrak{H})$.

Actually, these two modules are in duality by the relation (10), because, by the theory of harmonic integrals, we can set up an isomorphism

$$
H^{0,1}(\mathfrak{A}) \ni \tilde{\gamma} \longrightarrow \tilde{\gamma}^{+} \in H^{m, m-1}(-\mathfrak{H})
$$

in such a way that $\left\langle\tilde{\gamma}, \tilde{\gamma}^{+}\right\rangle>0$ for $\tilde{\gamma} \neq 0$. (Cf. [4], [5].)
Hence $H^{0,1(\mathfrak{H})}$ can be considered as the space of linear functions on $H^{m, m-1}(-\mathfrak{U})$.

Now, we assume that V is a curve Γ, U_{j} are open sets in Zariski topology and $a_{j k}$ and $b_{j c}$ are rational functions on Γ. Then $h_{j k c}$ are also rational functions and ω_{j} are of type (1,0). Since $d^{\prime \prime} \omega_{j}=0$, ω_{j} are holomorphic differentials in U_{j} and $R_{j} \omega_{j}=R_{k} \omega_{k}$ is a meromorphic differential on the whole Γ, which we denote by the letter $\bar{\omega}$. It is clear that $\bar{\omega}$ is in the space $\mathfrak{M}(-\boldsymbol{D})$ of differentials with $(\bar{\omega})+\boldsymbol{D}>0$. It is also clear that $H^{0,1}(\mathfrak{A})$ and $\mathfrak{W}(-\boldsymbol{D})$ are isomorphic by $H^{0,1}(\mathfrak{H})$ $\ni\left(\omega_{j}\right) \longleftrightarrow R_{j} \omega_{j}=\bar{\omega} \in \mathfrak{B}(-\boldsymbol{D})$.

Let $\left(\alpha_{j}\right)$ be a C^{∞} cross section of \mathfrak{B} defined by ($\alpha_{j k}, b_{j_{k}}$). Let $U_{0}=\Gamma-\sum_{k} \boldsymbol{F}_{k}$ be the intersection of U_{j} and take an open set U_{k} for each k, with $\boldsymbol{P}_{k} \in U_{k}$. Then

$$
\begin{aligned}
\int_{\boldsymbol{\Gamma}} d^{\prime \prime} \alpha_{j,} \wedge \omega_{j} & =\lim _{\varepsilon \rightarrow 0} \int_{\boldsymbol{\Gamma}-\Sigma S_{\varepsilon^{\prime}}(k)} d\left(\alpha_{0} \omega_{0}\right) \\
& =\lim _{\varepsilon \rightarrow 0} \sum_{k} \int_{\partial S_{\varepsilon^{\prime}}(k)} \alpha_{0} \omega_{0}
\end{aligned}
$$

where $S_{\varepsilon}(k)$ denotes a geodesic circle of radius ε, with center \boldsymbol{P}_{k}. In the neighborhood of \boldsymbol{P}_{k}, we have

$$
\alpha_{0}=a_{0 k} a_{k}+b_{0 k}, \quad \omega_{0}=a_{0 k}^{-1} \omega_{k} \quad \text { and } \quad a_{0 k}=R_{0} / R_{k},
$$

therefore

$$
\int_{\partial S_{\varepsilon}(k)} \alpha_{0} \omega_{0}=\int_{\partial S_{\varepsilon}(k)} \alpha_{k} \omega_{k}+\int_{\partial S_{\varepsilon}(k)}\left(b_{0 k} / \alpha_{0 k}\right) \omega_{k} .
$$

The first term on the right hand side gives, when ε tends to 0 , the limit 0 , and the second gives

$$
\int_{\partial S_{\varepsilon}(k)} h_{0 k} \cdot\left(R_{k} \omega_{k}\right)=\int_{\partial S_{\varepsilon}(k)} h_{0 k} \bar{\omega}=2 \pi V-1 \operatorname{Res}_{P k}\left(h_{0 k} \bar{\omega}\right) .
$$

Hence

$$
\left\langle\left(d^{\prime \prime} \alpha_{j}\right), \omega\right\rangle=\int_{F} d^{\prime \prime} \alpha_{j \wedge} \omega_{j}=2 \pi V-1 \sum_{k} \operatorname{Res}_{P_{k}}\left(h_{0 k} \bar{\omega}\right)
$$

this shows that our second invariant $\left(d^{\prime \prime} \alpha_{j}\right)$ is the same as Weil's one.
4. Returning to the general case of any dimension m, we can express the second invariant explicitly in terms of R_{j} and $h_{j k}$ (or R_{j} and $b_{j k}$).

Take a partition of unity $1=\sum f_{j}$, subordinate to the covering $\left\{U_{j}\right\}$, then

$$
\begin{aligned}
& \int_{V} d^{\prime \prime} \alpha_{j \wedge} \omega_{j}=\sum_{j} \int_{V} f_{j} \cdot\left(d^{\prime \prime} \alpha_{j} \wedge \omega_{j}\right) \\
& =\sum_{j} \int_{V} d\left(f_{j} \alpha_{j} \omega_{j}\right)-\sum_{j} \int_{V} d f_{j \wedge} \alpha_{j} \omega_{j}=-\sum_{j} \int_{V} d^{\prime \prime} f_{j \wedge} \alpha_{j} \omega_{j} .
\end{aligned}
$$

For a point \boldsymbol{P} of \boldsymbol{V}, let $\boldsymbol{P} \in U_{j_{0}} \cap \cdots \frown U_{j q}$ and $\boldsymbol{P} \notin U_{j}$ for $j \neq j_{\mu}$, then in the neighborhood of \boldsymbol{P} we have

$$
\begin{gathered}
\alpha_{j_{\mu}}=a_{j_{\mu} j_{0}} \alpha_{j_{0}}+b_{j_{\mu} j_{0}}, \quad \omega_{j_{\mu}}=a_{j_{\mu} j_{0}}^{-1} \omega_{j_{0}}, \\
\sum_{j} d^{\prime \prime} f_{j \wedge} \alpha_{j} \omega_{j}=\sum_{\mu} d^{\prime \prime} f_{j_{\mu} \wedge} a_{j_{0}} \omega_{j_{0}}+\sum_{\mu} d^{\prime \prime} f_{j_{\mu} \wedge} \wedge h_{j_{\mu} j_{0}} \bar{\omega}=\sum_{j} d^{\prime \prime} f_{j \wedge} h_{j_{j_{0}}} \bar{\omega} .
\end{gathered}
$$

Now $\sum_{j} d^{\prime \prime} f_{j} h_{j j_{0}}$ does not depend on j_{0}, and hence is a differential form on the whole \boldsymbol{V} (with singularities). In fact

$$
\sum_{j} d^{\prime \prime} f_{j} \cdot h_{j j_{1}}-\sum_{j} d^{\prime \prime} f_{j} h_{j j_{0}}=\sum_{j} d^{\prime \prime} f_{j} h_{j_{0_{0}}}=0 .
$$

Put

$$
\gamma_{j}=-R_{j} \sum_{k} d^{\prime \prime} f_{k} h_{k j_{0}},
$$

then γ_{j} is C^{∞} in U_{j} and $\gamma=\left(\gamma_{j}\right)$ is a $d^{\prime \prime}$-closed (0,1)-form with coefficients in \mathfrak{M}. The above formula shows that $\left\langle\left(d^{\prime \prime} \alpha_{j}\right), \omega\right\rangle=\langle\gamma, \omega\rangle$, hence

$$
\gamma \sim\left(d^{\prime \prime} \alpha_{j}\right)
$$

References

[1] A. Weil: Fibre spaces in algebraic geometry. Mimeographed Notes, University of Chicago (1952).
[2] K. Kodaira: On cohomology groups of compact analytic varieties with coefficients in some analytic faisceau. Proc. Nat. Acad. Sci., U.S.A., 38 (1953).
[3] K. Kodaira and D. C. Spencer: Divisor class groups on algebraic varieties. Proc. Nat. Acad. Sci., U.S.A., 38 (1953).
[4] K. Kodaira: On a differential-algebraic method in the theory of analytic stacks. Proc. Nat. Acad. Sci., U.S.A., 39 (1954).
[5] Y. Akizuki and S. Nakano: Note on Kodaira-Spencer's proof of Lefschetz theorems. Proc. Japan Acad., 30 (1954).

