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151. On Spaces Having the Weak Topology with Respect to
Closed Cowverings. II

By Kiiti MORITA
Department of Mathematics, Tokyo University of Education
(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1954)

In the first paper under this title [4] we have introduced the
following notion. Let X be a topological space and {A.} a closed
covering of X. Then X is said to have the weak topology with re-
spect to {A,}, if the union of any subcollection {A4,;} of {4,} is
closed in X and any subset of « A, whose intersection with each

8
A, is open relative to the subspace topology of A; is necessarily
open in the subspace -« A;.

B

Any CW-complex (cf. [5]) has the weak topology with respect
to the closed covering which consists of the closures® of all the cells.
As another example we remark that a topological space has always
the weak topology with respect to any loeally finite closed covering.”

The purpose of this paper is to establish the following theorem.

Theorem 1. Let X be a topological space having the weak topolo-
gy with respect to a closed covering {A,}. Then X is paracompact and
normal if and only if each subspace A, ts paracompact and normal.

Thus if X has the weak topology with respect to a closed
covering {A,}, each of the following properties for all subspaces
A, implies the same property for X: (1) normality, (2) complete
normality, (38) perfect normality, (4) collectionwise normality, (5)
paracompactness and normality, (6) countable paracompactness and
normality. On the other hand, local compactness or metrizability®
for all A, does not necessarily imply the same property for X.

81. Lemmas

Lemma 1. Let A be a closed subset of a paracompact and normal
space X. If {G,} is a locally finite system in A which consists of
open Fy-sets G, of A, then there exists a locally finite system {H,}
of open Fi-sets of X with the following properties:

1) The closure of a cell e should be understood here as that in the complex, that
is, as the intersection of all subcomplexes containing e.

2) From Theorem 1 below it follows immediately that a topological space which
is the union of a locally finite collection of closed, paracompact, normal subspaces is
paracompact and normal; this proposition is remarked also by E. Michael [2].

3) We have learned that the latter proposition given in the remark at the end
of [4] was already proved by J. Nagata in his paper: On a necessary and sufficient
condition of metrizability, Jour. Inst. Polytech. Osaka City Univ., Ser. A, 1, 93-100
(1950).
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(a) G,=H,~A for each a,
(b)  {H) is similar to {Gul; i.e. ~Gy=0 implies ~H,=0,
=1 =1
Proof. By assumption for each a there exists a countable col-

lection of closed sets F', of A (and hence of X) such that Ga_—-s

n=1
F,. Since X is paracompact and {F,;} is locally finite in X, by
[8, Theorem 1.8] there exists a system {H,} of open F,-sets of X
such that

(@) FyCH,, E1C(GaV(X“A))"‘Vm

() {(H,} is similar to {F,}.

Here {V.} is a locally finite system of open sets of X such that
G.CV, for each a; the existence of such a system {V,} is assured
by [8, Lemma in §3] since {G.} is locally finite in X.

By induction we can construct successively systems {H,},
1=2, 3, ... of open F,-sets of X such that

(az) F —u,z—xcHu ’ EiC(GaV (X— A))’\ Ve
(0) {Hy} is similar to {Fl,—H,..}.
Let us put
Ha: :j Haio

i=1

Then these H, are open F-sets of X and satisfy (a). It is also ob-
vious that {H,} is locally finite in X. To prove (b), let

AG¢£~O

¢=1

Then for any m=>1 we have

[ FaimVH;:ti —1)—" V( AFa m"\(’-\ o m—l))\'/(/\‘1 Hdi,m——l);

fw=1 A €A

where 4 ranges over non-empty subsets of {1,2,...,r}. Since

A P (A Hoyn YA G
iEA i=1
we see that
(FdimVHaim 1)”"“1 ag,m—1e

By induction with respect to m we can easily verify by virtue of
(b,,) that

~ E,mzo, for every m=>1.
i=1
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Thus we have ~ H,=0. This proves (b).

=1

Remark. From the above proof it is seen that if A is a closed
set of a paracompact normal space X and {G,} is a locally finite
open covering of A, there exists a locally finite open covering {H,}
of X satisfying only (a).”

Lemma 2. Let {A, B} be a closed covering of a topological space
X and {U,} a locally finite system in A which consists of open F-sets
U, of A. If B is paracompact and normal, there exists a locally
finite system {V,} of open F,-sets of X such that

(a’) Ua: Va’\A)
(b) {V.} is stmilar to {U,}.

Proof. If we put G,=U,~B, then {G,} is a locally finite
system which consists of open Fl-sets of A~B. Applying Lemma
1, we can find a locally finite system {H,} such that H, are open
F,-sets of B and G,=H,~A~B for each a and {H,} is similar to
{G.}. Let us put

Va: UauHao

Then these V, are open F,-sets of X since V,~A=U,, V,~B=H,,
and satisfy the conditions (a) and (b).

§2. Proof of Theorem 1. Since the ‘‘only if >’ part is obvious,
we have only to prove the ‘“if’’ part. Our proof is obtained from
an elaboration of the method given in [4].

Let X be a topological space having the weak topology with
respect to a closed covering {4,}. Let each A, be paracompact
and normal. Then by [4, Theorem 2] X is normal. Hence it is
sufficient to prove the paracompaetness of X.

Let us assume that the set of indices a consists of all ordinals
less than a fixed ordinal 5, and put for each <y

P'c:v{Aulaé’T}’ Qm:v{Adla<T}*

Let @& be any open covering of X. We shall prove the existence
of a locally finite refinement B of &. The construction of B will
be performed by transfinite induction. For this purpose let us as-
sume that for each a less than + (<) there exists a countable
collection of locally finite open coverings

u(a: )= {U(Z, a,1)| A€ 2o, 7’)}: 1=0,1,2,...

4) R. Arens has shown that a weaker assertion than this is essential for the
validity of a generalization of Tietze’s extension theorem. Cf. R. Arens: Extension
of coverings, of pseudometrics, and of linear-space-valued mappings, Canadian Jour.
Math., 5, 211-215 (1953).
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of P, with the following properties:

(ay) W(a, 0) is a refinement of EA~P,= {G~P,| G e G}:
U@, a, )G, a) € G.

(b.) In case B<a we have 2(B, 1)T2(a, 1), 1=0,1,2,... .

(¢s) In case B<a we have GQA, B)=G(, a) for 2¢ L2(8, 0).

(d,) There exists for each 2¢92(a, %) a continuous mapping @,
of P, into a closed unit interval I={t]|0=<t=<1} such that

U@, a,1)={% | Pj,q4 (X)>0]}.
(e) In case S<a we have
P =Paas | Pg for 2¢€2(8,7).
(f.) For any 1€ 2(a,t) the set
', a0)={ulUQ, a )~Ug, a, t—1)7E0, p € 2a, 1—1)}

is finite, ¢=1,2,... .

(9.) In case B<<a we have
', B, 1)=I@,a,%) for 2eL2(B,1).

Let us put
(1) 2:(0) = {2a, 1) | a<},
(2) ', )= A{I'Q, a, 9) | a<r},
(3) U, )= {UQR a, 1) | a<r},

where I'(A, @,%) and U(4, a,t) mean the empty set for 2¢2,.(¢)
— e, ).

Then by (g.) we have I', (1, ©)=1I'(4, a, t) for 2 € 2(a, %) and I'«(2, 7)
is finite. Since by (e.)
(4) U*(Z) /I’)APa: U(zy a, 7’))
U.(4, 7) are open sets of Q. by the property of weak topology.

For 2¢ 2,(¢), the map ¥, : Q.— I defined by

Vo (@) =@re: (@) for zeP,

is single-valued and continuous by (e,) and the property of weak
topology of X, and

(5) U@, 0)= {2 | ¥ (2)>0}.
From (2) and (8) it follows that
(6) Ui, )~ Ux(p, t—1)=0 for pe2,0G—1)—TI@Q,1),

since in case 8=a, UQ, B, 1)~U(y, a,1—1)=UQ, a, 1)~ Uy, B, 1—1)=0.
Therefore {Ux(4, 1) ] A€ 2,(4)} (:=0,1,2,...) are locally finite
open coverings of Q..
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Since A. is paracompact we can apply Lemma 2 to our case in
view of (5); there exists a locally finite system {L“(2, ¢), L, 2+1)|
2€2,(1), pe,(¢+1)} of open sets of P, which is similar to {U,(4, 1),
Ui(u, t+1) | 2€ 2,(0), € 2,(¢+1)} and satisfies

U, 1)=L%Q, ©)~Q., Ux(p, t+1)=L(u, 1+1)~Q..
‘We put
H(@, 0)=L""(2, 0)~G(2),
H, i)=L*"Q, ))~L*®, 1), ©=1,2, ...,

where G(2) means G(4, @) (with a suitable a) in (@,) which is deter-
mined uniquely by (¢,), and hence U,(2, 1)CG(2) ¢ 8. Here we note
that

(8) {H( %), H(u,i+1) 12, p} is similar to
{U*('z: 7’): U*(:u’ 1+ 1) |4 /‘} .

By the normality of P. we can construct a continuous mapping
Py : Pr—> I such that

Yo (@), for xeQ.
Phm0 (x):{ 0 , for xzeP.—H(20).
Let us put

U@, 7, 0)={2 | Pr,,0(®)>0}.

Then U(,+, 0)CH(2, 0) and hence {U(@4, 7, 0) |2 ¢ 2,(0)} is locally
finite in P. and we have U(4, v, 0)0CG(2) ¢ 6. By (8) we have

(9) U(p, 7, 0)~H(4, 1)=0, for pe2,0)—1I@2,1).
Since P. is normal there exists an open set N, of P, such that
Q.CN,, NCM, My=<{UQRr,0)]2e.0)}.

Since A. is paracompact and P.— M,=A.—M,, there exists a locally
finite system {U(», 7, 0) | v € 2,,(0)} in A, such that U(v, r, 0) are
open F,-sets of A. (and hence of P, by (10)) and

(10) P,:——MOCV {U(V’ T 0) I v € ‘Q**(O)}CAt_Jv—o:Pw’“N;)
11) {U(,,0) | ve,.(0)} is a refinement of G~A.,.

It is obvious that there exists for each » e 2,,(0) a continuous
mapping @,-,, : P, — I such that

U(V’ T, 0)={z | Pv,x,0 ($)>O} .
Let us put
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u (7') 0>: {U(z) Ty 0) ] le ‘Q(T; O)}) -Q('T; O):Q*(O)V‘Q**(O)'

Then U (s, 0) is a locally finite open covering of P, and a refinement
of 8~P,. We shall next construct locally finite open coverings

U(r, 2)= {u@,, 1) | 1e Q(+ )}, ©=1,2, ...
of P, satisfying the conditions:

(a¥) 2(r,7) is the sum of two disjoint sets 2,(¢) and 2,.(2).
(b¥) There exists for each 2¢ 2(r, 7) a continuous mapping ¢,,.,::
P.— I such that

U@, 7, 0)={ | gs..(x)>0}.
(¢¥) For 2¢e 9,(t) we have

"I’)\J(x) ) fOl’ X e Q’c:
0 , for zeP,—HQ,t)~N;,

where N;_, is an open set of P, such that
Q.CN, . CNo T U@, 7, i—1) | 1€ £,G—1)).

91’/\,1,@(37):{

dF) A= AU, 7, i) | 1€ 2,0)} S (U, 7, 1) | v € 244()] CA.—N..
(e:k) '@, 0={p | U=, 0)~Ulp, 7 t—1)F0, pef(r,i—1)} is a
finite set and I'(A, 7, ©)=I"x(2, %) for 2e Q,(z).

If we put N_=P,, then U(r, 0) defined above satisfies these
conditions except (¢f) with ¢=0. Let us assume that U(s, ¢—1)
satisfying conditions (a;*) to (e;*,) is constructed. Then {U(4, 7, ?) |
2¢€ 2,(7)} defined by (b}), (¢f) is locally finite in P, since U4, 7, ¢)CC
H(2,¢) and {H(2,%) ]2} is locally finite in P.. Since U(r,¢—1) is
locally finite and A. is paracompact we can construct a locally finite
system {U(y, 7, %) | v € 2,4(%)} which is locally finite in A. and hence
in P, and satisfies (b)), (df) and (¢}). The validity of (ef) for
2 € 2,(2) now follows from (d;*,) and (8) since U2, 7, ©)"N,_; by (c¥).
Thus the existence of a locally finite open covering U(w, 7) of P,
satisfying the conditions (a}) to (¢}) is verified.

Therefore by induction we see the existence of U(r, %) satis-
fying conditions (a}) to (ef) for ¢=1,2,... .

Then the coverings U(r, %), ¢=0,1,2,...clearly satisfy the
conditions (a.) to (g.).

Thus by transfinite induction we can find locally finite open
coverings (e, 2), 1=0, 1, 2, ... satisfying the conditions (a.) to (9.)
for any a<g.

Let us put finally

B(D)={V (1) | 1€ 20)},
where
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V@, )= {U@, a,0) | a<gn}, Q@)= {2(a, 1) | a<p]},

and U(4, a, ) means the empty set for 4 ¢ 2(a, 7). Clearly each B(2)
is an open covering of X because of the weak topology of X. By
the same argument as that for {U,(4, %) |4¢€ 2,0} (cf. (6)) we see
that each element of B(¢) intersects only a finite number of sets
of B(t—1). Hence each B(¢) is a locally finite covering of X. In
particular, B(0) is a locally finite open covering of X and a refine-
ment of &. Thus Theorem 1 is completely proved.

§3. Some Remarks. From the above proof of Theorem 1 we
have

Corollary. Let {A;} be a countable closed covering of a topologi-
cal space X such that o subset of X is closed if its intersection with
each A; 1s closed.” If each A, is normal, then X is mormal, and
moreover if each A, is paracompact, then X is paracompact.

By [1, Theorem 4] and [4, Lemma 38 and Theorem 2] we can
easily prove

Theorem 2. In Theorem 1 the word ‘‘paracompact’’ can be re-
placed by “‘countably paracompuct’’ throughout.
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