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174. Dirichlet Problem on Riemann Surfaces. III
(Types of Cowering Surfaces)

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University
(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1954)

Let R be a null-boundary Riemann surface and let R be a
positive boundary Riemann surface given as a covering surface.

1) If u(R,UAR,R*)=1, we call B a covering surface of
D-type over R.

2) We map R” onto the unit-circle U,:|§[<1 conformally.
If the composed function z=2(§): Us:—>R—>R* has angular limits
with respeet to R almost everywhere on |§]=1. We call R a
covering surface of F-type aver RE.

8) Let T(r) be the characteristic function of the mapping
R—>R. If T(r) is bounded, we say, R is a covering surface of
bounded type. By Theorem 1.1, it is easy to see that we have

Bounded type—;)F-type—>D-type, and that F-type implies u(R>,
A(R>, R*))=1. If the universal covering surface of the projection
of R is hyperbolic, u(R>, A(R>, B*))=1 implies that R is a covering
surface of F-type, because u(R~,U(R>, B)g))=0.

Let B be a covering surface over R. In the following, we
investigate the relations between Riemann surface B and R. By

Theorem 1.1 we have at once the following
Theorem 8.1. If R is a covering surface of bounded type, then

R is also of bounded type relative to R.

Theorem 8.2. Let R be a covering surface such that the universal
covering surface of the projection R of R is hyperbolic. We map
R'=,R* and R conformally onto the unit-circles U, :1€1<1,U,:|5]<1
and U.:|{| <1 respectively. Let n=5(), §=E() and §=E&(y) be
mappings U, ~U,, U—~U, and U,~U, respectively. Then we have

w(R, UR, B*) = w(B=, UR™, B*)).

Proof. Since w(R'™, A(R™, B))=u(R>, U(R>, B)):;u(ﬁ’, ar(ﬁe, B))=0
without loss of generality, we can suppose that every A.B.P. lies
on R. Let A, and A, be images of W(R*, R) and %[(I%, R) respectively,
and let .S, .S, and .S, be the sets where the corresponding functions

1) — means implication.
2) Measure of a set of A.B.P.’s of R> with projections on the ideal boundary B
of R.
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have angular limits on U,:|n|=<1, U.:|CI=<1 and U,:|9|=<1
respectively. Then mes,S,=mes.S,=mes.S,=2w. Take a point
&€ (:S. NS NCA,) and let I, be the radius terminating at ¢,
where CA. is the complementary set of A. with respect to the
circumference of U.. If [,, the projection of /., on U,, tends to a
point #,:|%,1<1, I, determines an A.B.P., whence {, ¢ A.. This is
absurd. Next, assume that [, converges to an arc y on |5|=1
such that y N A4,30. Take a point », € A, and let !’ be the radius
terminating at »,. Then [, intersets !’ infinitely many times. It
follows that /, determines an A.B.P. angularly, because the image
l. on U of [, and the image I{ of I’ tends to the same point &, in
U.. Thus {,¢A,. Suppose I} intersects an angular domain A4,(6):

larg (1—e %) |< %——8, e e A, infinitely many times, then we

have also that {,¢A,. Hence, if { tends in an angular domain
A.(0) at every point of CA.( S, .S, =»() tends to CA,+C.S,
or tends to A. tangentially. Let F'({) and F'(») be closed subsets
in CA.NS.N.,S. and in A, respectively, and let D (F'({)) and D,
(F'(n)) be domains such that D (F'({)) and Ds(F'(5)) contain angular
endparts: arg|l—e "¢ ]<127———8, e® ¢ F'({) and arg|l—e %, ]<‘gﬁ——8,

e” ¢ F'(») respectively and let C!({) and C/(») be the rings such that
r<|{l<1land r<|yl<1l(r<1). From above consideration, since
§=£&(») has angular limits in U, at every point of A,. There exists
a subset A4,, of A, such that angular limits at 4., are contained in

|E|<1~—1— and mes|A4,—A4.,. |<ﬁ. Therefore there exists a closed
n
subset F'(y) of A,, and r, for §, such that mes| 4., .,.—F(3) |<* and
if 5 € (Ds(F ()N C/(n)), then | &(n) [<1—§’. On the other hand since
n

€=£&() has angular limits at every point CA.(\:S. which lie on
|§]=1, there exist ' and a closed subset F({) of CA. such that
mes|CA,— F({)l<eand if { € (Ds(F(£)) NCL()), then =) ¢ Ds(F'(n)).
Denote by C.(») a circle such that |5|<r(r<1) and let u(;) be a
continuous super-harmonic function in U, such that () is harmonic
in Dy(F'(n)) UCx3), v(n)=1 on the boundary of (D,(F{3))UC.(3)) not
lying on [5|=1, v(n)=1 on U,—(D«F ()| C(n) and v(»)=0 on the
boundary of ((Ds((n))UC.(»)) lying on [5]|=1. Consider u(») on
C.() UDs(F(£)), then v(l)=u(y) is a function such that limuv({)
=1 when ¢ tends to F({). Since the boundary of (C.L({)U Ds(F'(C)))
is rectifiable and we can take & arbitrarily, we have w(U,, F'({))
= uw(U,, CF(y)), where uw(U., F'({)) and u(U,, CF(»)) are the lower
envelopes of {v({)} which are the class of continuous super-harmonie
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functions in D,(F'({)) such that 0 <v({)<1 and lim v({)=1, when ¢
tends to F'(€) and of {v(y»)} respectively. Let ¢ - 0. Then we have
o(U,, CA) < w(U,, CA,). Since A, and A, are measurable,

W, AR, R*) = u(R™, UER™, R*)).

Corollary. If the universal covering surface of the projection
of R is hyperbolic and R is of F-type, then R is also of F-type
over R*, where Risa covering surface over R.

If the universal covering surface of the projection R’ of R is
parabolic, remove a finite number of point p,(¢=1,2,...n) so that

(R —-ﬁp,)” may be hyperbolic. Let R be a covering surface R and
let z;,:l(j—l 2,...) be points of R lying on p, and Pisw (k=1,2,...)
be points of R lymg on pi, Put RB=R— Zpij and R B me
We map R, R R and R and (R'— Zpi)"" onto U,: |77|<1 Us:

I91<1, Ug:lCl<]l, UZ.ICI<1 and U§.|$l<1 conformally respect-

ively. Let A; and Az be images of A.B.P.’s of R and E.

Theorem 3.3. Let R be a positive boundary Riemann surface.
If R covers p; so few times that >)G(z, p,;)< e and if

BB, W, B = (B WE, B)=o(Us, A7),
then for every covering surface R over R,

(B, UWE, R*)= M(R QI(R R*))—“w(Ug, ),
where G(z, py) is the Green’s functzon of R with pole at py.

Proof. 1) As to B and R let Ai and A be the images of
A.B.P.’s w1th projection on R of R and R respectively. Then
A, and A, are Borel sets and »=7() and ,=5&) have angular
limits contained in U, at every points of ﬁi and Axt. Let {7}
(s=1,2,...) be images of p; in U, and let {{,;,} (t=1,2,...)be images
of P in U, Since EG’(z, Dizw) =366, Py)< 0, 0 >3log |17 — .

1— CtJMC 77 Nijs
= > log —¢ and > (1—1{yl) < o, where G2, piy) is the
(%77

Green’s function of B with po]e at pw

Let [ and !’ be paths in R and R determining an A.B.P. not
lying on p;; and not lying on p,;, respectively. Since we can deform

[ and I’ as little as we please, we can suppose that the projection
of [ and I’ do not pass p;;.

2) Let 22 be the image of A.B.P.’s of B whose projection lie
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on p; of B. Since ZG(z, i) < o, ,u(R ‘ZI(R Sip;)=0. We con-
sider only A.B.P.’s not lying on pw Since R and R are covering

surfaces, we can consider Ai and A the images of A.B.P.’s of R

)2

and R lying in U,. Hence Ad and Ai are Borel sets. Since R
the universal covering surface of (U,—>]Ci),

(U, A)=u(B, U(EB, R)) = u(B, WR, R))=w(Ux, 4,).

Since w(R,A(R, R)) is harmonic in B, w(R,W(E, R)) is a single
valued harmonic functlon in U,. We denote by E, the set on

eo

[{]1=1 where ,u(R JI(R R)) has angular limits 2(2<1). We show
mes (Ai NE,)=0. Denote the radial segments from ; to [C[|=1
by Siu and put (U.— Z‘S’im)mU Then U/ is a simply connected
domain with a rectlﬁable boundary. Consider the function (= C(C)
Then the inverse fuction £=C() is also single valued and U’ is
mapped into Uz conformally such that the image of U! covers
U: at most once. Let /. be a radial path in U! terminating at A,
and let Iz be the image in Uz of I.. Then Iz is a path determining

an A.B.P. lying on R. Hence [z tends to a point in 11 Let Zﬁ
be the set of points which is an endpoint of l~ above-mentioned
Then Z’ (CE) is an analytic set. Smce ,u(R %[(R R)) has limit
2 along I, when { tends to Aiﬂ E,, [L(R ‘)I(R R)) has limit 2 along
the image /7 of .. Hence at every point of the image (ﬁa)
of (Ai ﬂL )p(R 9I(R R)) has angular limits smaller than 1. Since
,u(R A (R R)) = »(Uz, 4,), mes (m,) =0. On the other hand,
we map AU{ ont |{’'|<1. Then |{'|<1 ls a covering surface over
Uz, and (4;N E)) is transformed to a set (A4;() /@'_/on {¢’]=1. Then

by Lowner’s lemma, mes (fLﬂE,)’ =< mes (fLﬂ E)=0. Smee the

boundary of U/ is rectifiable, mes (A¢OEA) 0. Hence ,u(R QI(R R))
has angular limits 1 almost everywhere on Az Thus ,u(R, ‘lI(R, R))

< w(B, WE, B)) and u(k, %I(R R)= w(R, AR, R)).

Consider w(E, ’lI(R RB*)) on R Denote by A the set on |{]|=1
where at least one curve determining an A.B.P. terminates and

by CA its complement. We show M(R, )I(R R*)) has angular

limits 0 almost everywhere C’A Assume there exists a set Eﬁs of



No. 93 Dirichlet Problem on Riemann Surfaces. III 835

positive measure contained in CZ where ,u(ﬁfo 91(}?,00 R*)) has angular
limits 8(>0). Consider the mapping function &=¢&(), =2 and
denote by S7 and by .Sz the sets of point such that the corresponding
functions §=¢(%) and »=7() have angular limits on | £|<1 and Inl=1
respectively. On the other hand let EZ,‘ be the set of Z.q, images of
A.B.P.’s of IN%OO whose projection is contained in |$|<1—%. Then

lim | mes (Z,,—E:’,) [=0. Let I% be a Stolz’s path terminating at E’s
;;171 let I be its image. Then we see [z terminates at A~ tangentially
or CAx (Theorem 3.2). But since y(ﬁf%(ﬁf@*)) has limits §
along I, I, does not tend to a point where u(%, (R, B*)) has
angular limits 0. Therefore I, tends to the set K, where p(ﬁ,o
Q((]?TZ_B*)) has angular limits 2(0<2<1) or to the set where M(ﬁm

’)I(féwR*)) 1 tangentially. Now since mes[EAﬂCA%—O and by
Lowners lemma, we have mesIE,sl = 0. Hence ;w(R 91(R E*))
gp(R, ‘)I(R, R*)). Let A% be the set on [{|=1 where at least
one curve determining an A.B.P. not lying on B. Then A% is measur-
able and
w(k, %(R BN =T, A)+ (U, 43) >M(R WE, R)).

But ,u(R sJI(R R*))>O on A, where (Uz, A,) 1 almost every-

where. Hence p(R QI(R R*)) has the same angular limits as

Min[1, ,u(R %I(R R*))+ ,u(R ‘lI(R R)]. Since R is a covering
surface over R>, ,u(R %[(R RB*) <Min [1, p(R>, AR, R*))+,u(R
%A(R, R))]. On the other hand by assumption #(R AR, E")

U= p (R, AR, BY) = 0 (U, 47) and by 2) w(R, AR, R))-p(R
‘JI(R R)). Thus we have p(R m(R R*))>M(R AR, R*). The

inverse inequality is clear, because R is a covering surface over
R. Therefore

w(B AR, B)=u(R, WR, B¥)).
We show that the D-typeness of R does not necessarily imply
the D-typeness of R by an example.
Example. Let {B,,, Bs,.:} be domains shown in the figure
and construct a holomorphic function of the same kind as in
example in ‘‘Dirichlet Problem. II’’. Remove from the unit-circle

all the points such that f(2)=0,1, or 2 and let R be the remaining
surface. Then



836 Z. KURAMOCHI [Vol. 30,

1=u(R, AR, B*)>u(R", AR, B*)).
If we consider B as a
covering surface R over R,

we see that R is not of D-
type, but R is a covering
surface of D-type.

From the results obtained
till now, we see that the
measure u(R*,A(R>,R*)) under
the condition that the wuni-
versal covering surface of the
projection of R is hyperbolic,
depend on the size of A(R,E*).
The B-typeness and F-typeness
depend also on it. Hence theorems 1, 2 and 8 will be natural.
On the other hand u(R, AR, R*)) and D-typeness of R depend not
only the gize of A(R, R*) but on the structure of K and A(R, B*),
i.e. the class of super-harmonic function {v(2)} defining u(R, A(R, B*)).
The class is so small that we may have u(R, UA(R, B*))=1 on some
complicated Riemann surface. Therefore the possibility of the fact

that the D-typeness of R does not yield the D-typeness of B will
be understood.




