203. The Divergence of Interpolations. III

By Tetsujiro Kakehashi
(Comm. by K. Kunugi, m.J.A., Dec. 13, 1954)

4. Next we consider a generalization of Theorem 4. Let D be a closed limited points set whose complement K with respect to the extended plane is connected and regular in the sense that K possesses a Green's function with pole at infinity. Let $w=\phi(z)$ map K onto the region $|w|>1$ so that the points at infinity correspond to each other. Let $\Gamma_{R}(R>1)$ be the level curve determined by $|w|=R>1$.

In this case, we can also define the operation Y_{m} to $\varphi(z)$ single valued and analytic on Γ_{n} by

$$
\left\{\begin{array}{l}
Y_{m}(\varphi ; a)=\frac{\Gamma(1-m)}{2 \pi i} \mathrm{pf} . \int_{\Gamma_{R}} \varphi(t)[\phi(t)-\phi(a)]^{m-1} d t ; \tag{22}\\
\quad a \text { on } \Gamma_{n} ; m \neq 1,2, \ldots, \\
Y_{m}(\varphi ; a)=\frac{(-1)^{m}}{2 \pi i} \int_{\Gamma^{\prime} k} \varphi(t) L_{m}[\phi(t)-\phi(a)] d t ; \\
a \text { on } \Gamma_{R} ; m=1,2, \ldots,
\end{array}\right.
$$

where $(w-\phi(\alpha))^{m-1}$ and $L_{m}(w-\phi(\alpha))$ are functions single valued and analytic interior to $\Gamma_{s,}$ which are defined in paragraph 1.

Given a function $f(z)$ which is single valued and analytic throughout the interior of the level curve Γ_{k} and which has singularities of Y_{m} type on Γ_{k}, that is

$$
\begin{equation*}
f(z)=g(z)+\sum_{k=1}^{N} g_{k}(z) y_{m_{k}}\left(\phi(z) ; a_{k}\right) ; \quad a_{k} \text { on } \Gamma_{R}, \tag{23}
\end{equation*}
$$

where $g(z)$ and $g_{k}(z)$ are functions defined by (8) which are single valued and analytic on and within the level curve Γ_{R}, and $y_{m_{k}}\left(w ; a_{k}\right)$ are functions defined by (8) which are single valued and analytic interior to Γ_{R} but have respectively a singularity of Y_{m} type at $z=a_{k}$.

Let a set of points (17) lie on D and satisfy the condition that the sequence $W_{n}(z) / \Delta^{n} w^{n}$ converges to an analytic function $\lambda(w)=$ $\lambda(\phi(z))$ non-vanishing for z exterior to D, and uniformly on any closed limited points set exterior to D, and uniformly on any closed limited points set exterior to D, where Δ is capacity of D. That is, for any positive number greater than unity,
(24) $\quad \lim _{n \rightarrow \infty} W_{n}(z) / \Delta^{n} w^{n}=\lambda(w) \neq 0$ uniformly for $|w| \geqq r>1$.

The sequence of polynomials $S_{n}(z ; f)$ of respective degrees n found by interpolation to $f(z)$ in all the zeros of $W_{n+1}(z)$ is defined by

$$
\begin{align*}
S_{n}(z ; f)= & S_{n}(z ; g)+\sum_{k=1}^{N} S_{n}\left(z ; g_{k} y_{m_{k}}\right) \tag{25}\\
= & \frac{1}{2 \pi i} \int_{T_{R}} \frac{W_{n+1}(t)-W_{n+1}(z)}{W_{n+1}(t)} \frac{g(t)}{t-z} d t \\
& +\sum_{k=1}^{N} Y_{m_{k}}\left(\frac{W_{n+1}(t)-W_{n+1}(z)}{W_{n+1}(t)} g_{k}(t) ; a_{k}\right) .
\end{align*}
$$

By the method similar to the proof of Theorem 3, we have

$$
\begin{aligned}
& \left.n^{m_{k}}\left(\frac{\phi\left(a_{k}\right)}{w}\right)^{n+1} S_{n}\left(z ; g_{k} y_{m_{k}}\right)=n^{m_{k}}\left(\frac{\phi\left(a_{k}\right)}{w}\right)^{n+1} Y_{m_{k}}\left(\begin{array}{c}
W_{n+1}(t)-W_{n+1}(z) \\
W_{n+1}(t) \\
t-z
\end{array}\right) ; a_{k}\right) \\
& \sim n^{m_{k}} \phi^{n+1}\left(a_{k}\right) \frac{W_{n+1}(z)}{w^{n+1}} Y_{m_{k}}\left(\frac{1}{W_{n+1}(t)} \frac{g_{k}(t)}{t-z} ; a_{k}\right) \\
& \sim n^{m_{k}} \phi^{n+1}\left(a_{k}\right) \lambda(\phi(z)) Y_{m_{k}}\left(w^{-(n+1)} \begin{array}{c}
g_{k}(t) \\
\lambda(\phi(t))(t-z)
\end{array} ; a_{k}\right) \\
& \left.+n^{m_{k}} \phi^{n+1}\left(a_{k}\right) \lambda(\phi(z)) Y_{m_{k}}\left[w^{-(n+1)}\left(\frac{1}{\lambda(w)}-\frac{t^{n+1}}{W_{n+1}(t)}\right)\right)_{t-z}^{g_{k}(t)} ; a_{k}\right] \\
& \sim(-1)^{m_{k}}\left[\phi\left(a_{k}\right)\right]^{m_{k}} \lambda(\phi(z)) \underset{\lambda\left(\phi\left(a_{k}\right)\right)\left(a_{k}-z\right)}{g_{k}\left(a_{k}\right)}=B_{k} \neq 0,
\end{aligned}
$$

for z exterior to Γ_{R}.
As a generalization of Theorem 4, a theorem follows by Lemma 3. That is,

Theorem 5. Let D be a closed limited points set with the capacity Δ whose complement K with respect to the extended plane is connected and regular in the sense that K possesses a Green's function with pole at infinity. Let $w=\phi(z)$ map K onto the region $|w|>1$ so that the points at infinity correspond to each other. Let $W_{n}(z)$ be the polynomials of respective degrees, n which satisfy the condition (24) and $f(z)$ be a function such that represented by (23).

Then the sequence of polynomials $S_{n}(z ; f)$ of respective degrees n found by interpolation to $f(z)$ in all the zeros of $W_{n+1}(z)$ diverges at every point exterior to Γ_{k}. Moreover, we have

$$
\begin{equation*}
\left.\varlimsup_{n \rightarrow \infty}\left|n^{\nu}\left(\frac{R}{\phi(z)}\right)^{n} S_{n}(z ; f)>0 ; \quad\right| \phi(z) \right\rvert\,>R>1 \tag{26}
\end{equation*}
$$

where p is the minimum of real parts of m_{k} in (23).
Additions and Corrections to Tetsujiro Kakehashi:
"The Divergence of Interpolations. I"
(Proc. Japan Acad., 30, No. 8, 741-745 (1954))
Page 742, equation (5), for " $\begin{gathered}1 \\ 2 \pi i\end{gathered}$ " read $" \frac{(-1)^{m}}{2 \pi i}$ ".
Page 744, line 4, for " $\lim _{n \rightarrow \infty} \begin{gathered}1.2 \cdots(n-1) \\ z(z+1) \cdots(z+n-1)\end{gathered}$,"

$$
\text { read " } \lim _{n \rightarrow \infty} \begin{gathered}
1.2 \cdots(n-1) \\
z(z+1) \cdots(z+n-1)
\end{gathered} n^{z "}
$$

