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Recently, Prof. K. Yano [6] has proved beautiful theorems
about groups of isometries of n-dimensional Riemannian spaces. We
shall study groups of isometries of a pseudo-Hermitian space, by
an analogous method.

1. Preliminary. Let M be a pseudo-Hermitian space of 2n
dimensions of class C*. Then there exists such a tensor field ¢ of
type (1,1) that

Phpi= —8&, G0 Pi P = G55
where g;; is the metric tensor of the space M, and ¢} and g, are
of class C®. If we put

Pii = giagg.(;)
then ¢;; is a skew-symmetric tensor by virtue of the relation @ip§
=—0&;. When the tensor ¢;; is covariant constant, the space M is
pseudo-Kghlerian.

Let G be a group of isometries of M onto itself and ¢} be
invariant by G. For brevity, we call G a group of Hermitian
isometries. If the group G is transitive on M, the space M is
called a homogeneous pseudo-Hermitian space by definition. Further-
more, if the Riemannian metric ¢;; of the homogeneous pseudo-
Hermitian space M is pseudo-Kahlerian, then M is called a Ahomo-
geneous pseudo-Kihlerian space.

Let G be a group of Hermitian isometries of a pseudo-Hermitian
space M and H the subgroup of 7, each transformation of which
fixes a given point O of M. That is to say, H is the group of
isotropy at the point O € M. Then the subgroup H is isomorphic to
a subgroup H’ of the unitary group U(n) in » complex variables
and H operates on the tangent space of M at the point O in the
same manner as the real representation of H’ which operates on the
2n-dimensional real vector space. Throughout this paper, we assume
that the group G is always effective on M, and that the group G
and the space M are both connected. Moreover, for brevity, it is
supposed that the subgroup H of isotropy is connected.

2. Subgroups of U(n) of dimension r = n®*—2n+2. The follow-
ing theorem is proved by using the theorems due to D. Montgomery
and H. Samelson [3].
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THEOREM 1. Let G be a proper subgroup of the unitary group
Un) wn n complex wvariables. In cases n=2 and nx4, if
dim G = n*—2n+2, the group G.is conjugate to SU(n) or P,. In
case n=4, it is conjugate to one of the following groups:

SU4), Py, A,x Sp(2), Sp(2).

Here, the groups SU(n), Sp(2), P, and 4, are as follows: SU(n)
is the unimodular unitary group in % complex variables. Sp(n) is
the linear symplectic group in » quaternic variables. P, and 4,
are respectively the groups composed of all n-matrices of the types

eZO 0 40
<O A> and el
where 6 is real, A e Un—1) and I, is the identity m-matrix.
It is easily seen that,
dim U(n)=n? dim SUn)=n*-1,
dim P,=n*—2n+2 and dim Sp(2)=10.

3. Dimension of groups of Hermitian isometries. Let G be a
group of Hermitian isometries of a 2n-dimensional pseudo-Hermitian
space. Then it is easily seen that G is of dimension r < n®+2n.
The subgroup H of isotropy at a point OeM is of dimension
r,=r—2n.

If r=dim G=n>+2n—1, then r,=r—2n=n?>—1. Hence H is,
by virtue of Theorem 1, isomorphic to U(n) or SU(n). Both of
the groups U(n) and SU(n) have their natural real representations
on the real vector space V* of 2n dimensions, and their real rep-
resentations have the property of free mobility on V?*. Consequent-
ly, H have the property of free mobility at the point O € M. There-
fore, the given group G s transitive on M, since G and M are con-
nected.

Assume that the group G is of dimension 7 such that

n'+2n—1>r>n*+2 (n=3).

Then we have the following relations:

ry =1r—2n > n*—2n+2.
Hence, if n 3= 4, H is isomorphic to U(n) or SU(n) as a consequence
of Theorem 1, since » =38. Therefore, it follows that the group
G has the property of free mobility at the point O of M. Con-
sequently, the group G is transitive on M. Thus we obtain the
relations

r=1ry+2n=n>+2n—1.
This inequality contradicts to the given range of r. Hence, when
n=>38 and n =4, there exists no group of Hermition tsometries of
dimension r such that n*+2n—1>r > n*+2. When n=4 and
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28=n?+2n—1 > r > n*+2=18, G s transitive and dim G=19.

Finally, let G be of dimension r =n?*+2. Then we have
ro =r—2n=n*—2n+2. In case r, >n®*—2n+2, G is transitive on
M by the same arguments as above, for n>2. Hence r = r,—2
>n?+ 2 and this contradicts to the assumption that r=n?+2.
Therefore, r,=n*—2n+2 and, consequently, G ts transitive on M by
means of the equality r=r,+2n.

Hence, summing up the results above obtained, we have the
following theorem.

THEOREM 2. Let G be a group of Hermitian tisometries of o
2n-dimensional pseudo-Hermitian space M, Then G is transitive on
M for n=2, if the group G 1is of dimension r=n®*+2. In case
n =3 and n == 4 there exists no group of Hermitian tsometries of
dimension r such that

ni+2n—1 > r > n*+2.

In the following § 4, we find that the homogeneous pseudo-
Hermitian spaces in Theorem 2 are homogeneous Kihlerian spaces
which are locally symmetric.

4. Determination of the space M. Let G/H be a homogeneous
pseudo-Hermitian space of 2n-dimensions and G be of the maximum
dimension %?+2n. Then the subgroup H of isotropy is of dimen-
sion n and, consequently, H is isomorphic to U(n). H being compact,
the Lie algebra g of G' is decomposed into a direct sum as a vector
space in such a way that

g = m+f)y [b) m] < m,
where §) is the subalgebra of g corresponding to the subgroup H.
That is to say, G/H is a reductive homogeneous space [4]. The
subalgebra §) has a decomposition such that H=5,+5, and [8,, §,]= {0},
where b, is isomorphic to the Lie algebra of SU(n) and dim b§,=1.

Extending the base field of g to the field C of complex numbers,
we have a Lie algebra ¢° over C. Let w® 0§ and 5 be the sub-
algebras of ¢° corresponding respectively to m, ), and §,. Then there
exists a decomposition of the vector space m® such that m°=m,+mm,,
dim m;=dim m,=» and, moreover,

[U, X]=X for Xem,,
[U, X]=—X for Xem,

where U is a suitable element of 9. Therefore, the following re-
lations are easily obtained:

(U, [X, Y]]=2[X, Y] for X, Yem,,

(U, [X, Y]]=—2[X, Y] for X, Yem,

[U, [ X, Y]]=1{0} for Xem, Yem,
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Hence, it follows immediately that
[mh m1:|={0}, [alr‘nlj:{o}’
and [my, m,] < B
Thus it follows that [m, m] is contained in 0, that is, the homo-
geneous space G/H is locally symmetric [4].

Since g,; and ¢} are invariant by G, the tensor ¢;; is also invariant
by G. Since the homogeneous space G/H is locally symmetric, the
tensor ¢;; is covariant constant under the canonical connection of G/H,
which coincides with the Riemannian connection ([4], Theorem
15.4). Thus G/H is a homogeneous pseudo-Kihlerian space. On the
other hand, the group G has the property of free mobility on G/H.
Hence G/H is a Kihlerian space with constant holomorphic sectional
curvature.

When G/H has positive holomorphic sectional curvature and G/H
is simply connected, G is isomorphic to SUn+1) and G/H is a
complex projective space P(C, n) of » complex dimensions [1].

When G/H has negative holomorphic sectional curvature, G is
isomorphic to S¢n+1) and G/H is homeomorphic to a Euclidean
space E®* of 2n dimensions, where S¥(n+1) is the connected com-
ponent of the identity in the group composed of all linear trans-
formations of n+1 complex variables (2, 2s.-., 2ns;) Which leave
invariant the form

zl_z_l +z2§2+ e +zn§n'—zn+1§'n+1’

and whose determinants are equal to 1 [1].

When G/H is flat, the group G is isomorphic to the group
Mu(n) of all unitary motions in a unitary space of n complex vari-
ables, and moreover G/H is homeomorphic to £ [1]. Thus we have
the following theorem.

THEOREM 8. Let G/H be a homogeneous pseudo-Hermitian space
of dimenston 2n and dim G=n*+2n. Then G/H is a homogeneous
Kahlerian space with constant holomorphic sectional curvature K.
When K >0 and G/H is simply connected, G s isomorphic to
SUn+1) and G/H s P(C,n). When K< 0, G is tsomorphic to
SE(n+1) and G/H is homeomorphic to E**. When K=0, G s 4so-
morphic to Myn) and G/H vs homeomorphic to E*".

Now, we suppose that G/H is a homogeneous pseudo-Hermitian
space and dim G=n?+2n—1. Then the subgroup H of isotropy is
of dimension n*—1 and, consequently, H is isomorphic to SU(n).
Since SU(n) is compact, the homogeneous space G/H is reductive.
Then the Lie algebra g of G has a decomposition as follows:

9=m+[), [b) m] < m,
where §) is the subalgebra of g corresponding to the subgroup H.
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First, we have easily
(9, [m, m]] < [m, m].

Consequently, [m, m] is an invariant subspace with respect to ad (h):
g —g. Since § is simple, one of the following three cases occurs:
[m’ m]: {0}1 [m’ m]:m» [m’ m] :f)o

In case where [m, m]=m, m is an ideal and it is easily seen
that the radical of g is {0}. Thus g is semi-simple in this case [5].
Hence ) is an ideal of g. On the other hand, since G is effective, §
can not be an ideal. Thus the case where [m, m]=m does not
occur. Therefore [m, m] < § and consequently G/H is locally sym-
metric.

Since G/H is locally symmetric and G has the property of free
mobility, G/H is a homogeneous pseudo-Kihlerian space with constant
holomorphic sectional curvature. Since the space G/H is locally
symmetrie, by virtue of a theorem due to K. Nomizu ([4], Theorem
12.1), it is easily seen that the Lie algebra I of the restricted
holonomy group of G/H is isomorphic to ad (§,): m—>m, where b, is
an ideal of ). Then [ is a subalgebra of the Lie algebra v of SU(n),
for ad (h): m—m is the real representation of p. Thus it follows
that [ is trivial, since | <t and G/H has constant holomorphic
sectional curvature. Therefore the given space G/H is flat. Hence
the group G is isomorphic to a subgroup SM,(n) of M;y(xn), where
SMy(n) is composed of all elements of My(n) whose rotation parts
belong to SU(n). Moreover, the space G/H is homeomorphic to
E?*, Hence we have the following theorem.

THEOREM 4. Let G/H be a homogeneous pseudo-Hermitian space
of dimension 2n and dim G=n?+2n—1. Then G/H is flat and G s
isomorphic to SMy(n).

Theorems 8 and 4 are proved, in [1], by another argument.

By virtue of a theorem in another paper [2], we have the
following theorem.

THEOREM b. Let G/H be a homogeneous pseudo-Hermsitian space
of dimension 2n and dim G=n>*+2. Then, if n =4, G/H is locally
a product space of a homogeneous pseudo-Kahlerian space G H, of
dimension 2 and another one G./H, of dimension 2(n—1), both of
which have constant holomorphic sectional curvature. Moreover, the
two groups G and G,X G, have the same structure.

It is easily seen that the space G/H in Theorem 5 is a homo-
geneous space which is locally symmetric.

We obtain at once the following results by analogous arguments
as in Theorems 8 and 4. Let G/H be a homogeneous pseudo-Hermitian
space of dimension 2n. Then, ¢f H is tsomorphic to A,xSp(n/2),
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G/H s flat and is homeomorphic to E*. Moreover, in this case, G
48 tsomorphic to a subgroup of Muy(n) whose rotation part is
A, xSp(n/2). If H is isomorphic to Sp(n/2), we have that G/H is the
same as above and G s isomorphic to a subgroup of Mu(n) whose
rotation part ts Sp(n/2).
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