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77. Integrations on the Circle of Convergence and
the Divergence of Interpolations. I

By Tetsujiro KAKEHASHI
(Comm. by K. KUNUGI, M.J.A., June 13, 1955)

Let the points
2P
2P, 2

P) 2P, 2, 2P

........

)y n,
R17, R ,z§’,...,z§b’”>

........

which do not lie exterior to the unit circle C:|z|=1, satisfy the
condition that the sequence of

’w;LEZ) = (2 — ™) (2 —25) - - - (2 —20) 2

converges to a function A(z) single valued, analytic, and non-vanishing
for z exterior to C, and uniformly for any finite closed set exterior
to C, that is

©) lim,,.. ”’Z(z) —A2) %0 for |z|>1.

n

Let f(z) be a function single valued and analytic within the
circle C,:|z|=p > 1 but not analytic on C,. Then the sequence of
volynomials P,(z; f) of respective degrees » which interpelate to f(2)
in all the zeros of w,,,(2) is known to be

. — 1 wn+1(t)'—wn+l(z> f(t)
(D Psh)=, - ch A a<R<p.

It is known that the sequence of polynomials P,(z; f) converges
to f(z) throughout the interior of the circle C,, and uniformly for
any closed set interior to C,. But the divergence of P,(z; f) at every
point exterior to C, is not established in general.

This problem is seen in the paper by Walsh: The divergence of
sequences of polynomsials interpolating in roots of wnity; Bulletin of
the American Mathematical Society, 1936, Vol. 42, p. 715. And that
is treated in the following papers by the author.

T. Kakehashi: On the convergence-region of interpolation polynomials;
Journal of the Mathematical Society of Japan, 1955, Vol. 7, p. 32.
T. Kakehashi: The divergence of interpolations. 1, II, III; Proceedings
of the Japan Academy, 1954, Vol. 30, Nos. 8,9, and 10.

In this paper, we consider a certain type of integrations on the
convergence-circle of a function, which belongs to a certain class of
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functions, and consider the divergence properties of P,(z; f) at every
point exterior to the convergence-circle.

1. Let F(0); 0 <0 < 2w be a complex valued function with the
bounded variation (not necessarily periodic). Then the function

@—lf

is single valued and ana]ytlc Wlthln the circle C,: |z |=p.
Definition 1. Let K, (p > 0) be denoted by the class of functions
J() which satisfy the conditions

(1.1) f(z):"zz;ocn(%‘)n:ipr

[zl <p

ar@)  (p>0),

2 e —
0
27
(1.2) eo=1 [T emgme);  n=0,1,2,...,
2 ,
and
1.8) lim,,.lc,| >0,

where F(0) s a complex valued function with the bounded variation
and ts normalized by
1.4) F(0)=0, F(@©O—0)=F(0).

It is clear that a function which belongs to K, is single valued
and analytic within the circle C,:|z|=p but not analytic on C,, and

that, in the power series Ec,(i)n, the coefficients ¢, satisfy
P

0 <lim,,,lc,] < . And the function F(f) in (1.2) can not be
absolutely continuous by the Riemann-Lebesgue theorem. It is to be
noticed that the Fourier-Stieltjes coefficients ¢_, with negative suffixes
of F(6) is not considered.

For example, if F(0) is a step function, f(?) is a function with
poles of first order on the circle C,.

Let f(z) be the function which belongs to the class K, defined
by (1.1) and ¢(2) be a function single valued and analytic on C,, and
be defined by the Laurent’s series

1.5) P(R) = o an?™
We can not define in general the integral
jﬂwmw

in ordinary sense. In this case, we define the finite part of the above
integral by

(1.6) ”]ﬂmwww—f P*(pe") pe® dF (D),

where ¢*(2) is the prlnclpal part of the Laurent’s series (1.5), that is
a€.7 P*R)=25 a a2
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Lemma 1.1. Let f(2) be a function which belongs to the class K,
and p(2) be a function single valued and analytic on and between the
two circles C,:|z|=p and Cg:|2|=R <p. Then

(1.8) of. [o® £O dt= [ 2@ £ dt.
By Cauchy’s theorem, we have "’
1 1 " oo -n
—2;7;“ £¢(t) f(t) dtz 'é‘;‘:{ £R¢ (t) f(t) dt—' Zn=00n [~ P ’

where ¢*(t), ¢,, and «_,., are defined respectively by (1.7), (1.1), and
(1.7). Tt is clear that the last side is convergent. The left-side of
. 8) is also

oL f POF Odt=- f S p e MO AFO) = S Ot

Thus the lemma is estabhshed

Lemma 1.2. Let f(2) be a function which belongs to the class K,,

and a function p(2) single valued and analytic on C, be non-vanishing
on C,. Then

1.9) lim,, .

eat. pf f o (6) F(E) t- dt[> 0.

The function 1/p(2) Whlch 1s single valued and analytic on C, can
be expanded into the Laurent’s series

Up@) =S . B(%) =S B, 6,

which is absolutely convergent on C,. The function ¢(z)f(2) is also
expanded into the Laurent’s series

#@) fD=5m( 2]
Then the funection f(2) can be expanded into

110 f=Se(2) =S mbe) (L)

If we assume
limwfiﬁf f P(t) fE)t 1 dt=0,

we have lim,,.v,=0 by lemma 1.1. Let M=max]vy,|, then as n
tends to infinity

|ea| =1 S wp By | = ML B 4 max |, 373 Tt |

<M21=n—r"]]Bq]'*‘maXI'YpIZ]a*oo]Bql"’O

p>—
by the absolutely convergence of 34,6 and v,—0 as n—> oo, which
contradicts the condition of f(2). Thus the lemma has been proved.
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Lemma 1.3. Let f(z) be a function of the class K, and the

sequence of @u(2):n=1,2, ... single valued and analytic on C, tend to
zero uniformly on C, as n—>co. Then

(1.11) lim, ., 2 pf f o) fE) -1 dt =0

Let ¥,(6);n=1,2,. be the principal parts respectively of
@)™t It is clear that YV ()p" tends to zero on C, as n— o by
the condition of @,(t).

Hence
P f Pul®) SO dt= L f Vulpe® pe dF(0)

tends to zero as n—> o by the boundedness of |dF(6)]. Thus the
lemma is established.

2. In this paragraph, we consider the divergence of interpola-
tion polynomials of a function which belongs to K,.

Theorem 1. Let f(2) be a function which belongs to the class
K,(p > 1) and (P) be the points set which satisfies the condition (C).
Then the sequence of polynomials P.(z; f) of respectively degrees n
Sound by interpolation to f(2) in all the zeros of W,.,(2) diverges at
every point exterior to C,. Moreover, we have

.1) lim, .. <z> Pz f)\ >0 for |z]>p>1.
In the proof of this theorem, it is convenient to have the

Lemma 2.1. Let f(2) be the function of K,(po>1), A(2) be a function
single valued and analytic exterior to the unit circle C:1z|=1 with
positive modulus. Let S,(z; f) be the sequence of functions defined by
2.9 X _ fpf A =22 f(E) dt.

@-2) S )= A+t t—2

Then
2.3) lim,, .

(z) Sz f)l>0 for 1z]>p>1.

If 2)=1, S.(z; f) are partial sums of the power series of f(2).
Now we shall prove the lemma. In (2.2), for a fixed point z

exterior to C,,
n+1
(o) o [

converges clearly to zero as n—>o. And

£ " of. A" f(t) +1 pf. -1 —n-1
(z> omi J, AOE t—2 dt=p""Ae)-5 f [AE)(E—2)]" ) £ de

does not tend t0 zero as n—> o by lemma 1.2. Now the relation
(2.8) follows at once. Thus the lemma is established.
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Now we are in a position to prove the theorem. The sequence
of polynomials P,(z; f) of respective degrees » which interpolate to
J(?) in all the zeros of w,,,(?) is given by

(2.9 Pu(z; f)—- of. f wm(;) lz:;H(Z) g’(t)z dt.

Then we have

B ([0 20 S0
.2 f)—Pules f)= f {ww(t) l(t)j,,“} A g

for 2 exterior to the unit mrcle C. And we have
n+1 ( n+1 n+l ) n+1
(£) [t M) (2] [ £ 20
n+1 n+1
=<—t’1) {wZZi(xz) (wiﬂ(t) "i%t_)>+ l%t) <lv§;igz) —x@))}
= (%)Ml PAt,2); n=1,2,...,

where @,(t, 2) is the sequence of functions of ¢, for any fixed z ex-
terior to C,, single valued and analytic on C, and tends to zero as
n—> by the condition

2.5) lim,, .. “’_"(z) —2(2) %0

uniformly for any finite closed pomts set exterior to C;|z|=1.
Now the relation

@6) limy,of ) {8.5)— P )] =lim,, L f PutAfE) " dE=0

follows at once by lemma 1.3. Now we can verlfy from (2.8) and (2.6)

() Putes | >0

for z exterior to C,. That is, the sequence of polynomials P,(z; f)

diverges with the order 1ﬁjn as S,(z; f) diverges. Thus the theorem
p

llmn—)oo

has been established.



