25. An Estimation of the Measure of Linear Sets

By Zenjiro Kuramochi
Mathematical Institute, Osaka University
(Comm. by K. Kunugi, m.J.A., Feb. 13, 1956)

Let R be an abstract Riemann surface and suppose that a conformal metric is given on R, of which a line element $d s$ is given by the local parameter t such that $d s=|\lambda(t)| d t$ and let O be a fixed point of R. Denote by D_{ρ} the domain bounded by the points having the distance ρ from O and suppose for $\rho<\infty$ that the domain D_{ρ} is compact and $\bigcup_{\rho>0} D_{\rho}=R$. The boundary ∂D_{ρ} of D_{ρ} is composed of $n(\rho)$ components, $r_{1}, r_{2}, \cdots, r_{n}$. Denote by $\Lambda(\rho)$ the largest length of r_{k} $(k=1,2, \cdots, n(\rho))$, that is,

$$
l_{k}=\int_{r_{k}} d s, \quad \Lambda(\rho)=\max _{k} l_{k} .
$$

Put $N(\rho)=\max _{p^{\prime}<p} n(\rho)$. A. Pfluger proved that
if $\quad \lim _{\rho=\infty} \sup \left[4 \pi \int_{\rho_{0}}^{\rho} \frac{d \rho}{\Lambda(\rho)}-\log N(\rho)\right]=\infty,{ }^{1)}$
then

$$
R \in O_{A B}
$$

The condition of this theorem depends not only the minimum modulus but also on the number of components. In this article we give a condition depending only on the minimum modulus but our criterion is applicable only to a special type of Riemann surface, i.e. the Riemann surface which is planer and whose boundary is a closed set on a straight line. Let $\left\{R_{n}\right\}(n=1,2, \cdots)$ be the exhaustion of R with compact relative boundaries $\left\{\partial R_{n}\right\}$. The open set $R_{n+1}-R_{n}$ ($n \geqq 1$) consists of a finite number of ring domains $G_{i_{1}, i_{2}, \cdots, i_{n}}$ ($i_{1}=$ $\left.1,2, \cdots, j_{1}, i_{2}=1,2, \cdots, j_{2}, \cdots, i_{n}=1,2, \cdots, j_{n}\right)$. Let $\omega(z)$ be a harmonic function in $G_{i_{1}, i_{2}}, \ldots, i_{n}$ such that $\omega(z)=0$ on the outer boundary of $G_{i_{1}, i_{2}}, \cdots, i_{n}$ contained in ∂R_{n} and $\omega(z)=1$ on the inner boundary of $G_{i_{1}, i_{2}, \cdots, i_{n}}$ contained in ∂R_{n+1}. Let $D(\omega(z))$ be the Dirichlet's integral of $\omega(z)$ and put $\bmod \left(G_{i_{1}, i_{2}}, \cdots, i_{n}\right)=1 / D(\omega(z))$. We call it the modulus of $G_{i_{1}, i_{2}, \cdots, i_{n}}$ and further put $\mathfrak{M}_{n}=\min _{i_{n}} \bmod \left(G_{i_{1}, i_{2}, \cdots, i_{n}}\right)$. Then we can prove the following

Theorem. Let R be a planer domain and suppose that its ideal

1) A. Pfluger: Sur l'existence de fonctions non constants, analytiques, uniformes et borneés sur une surface de Riemann ouverte, C. R. Acad. Sci. Paris, 230 (1950).
boundary lies on the real axis. If every boundary component of $G_{i_{1}, i_{2}, \cdots, i_{n}}$ is convex and

$$
\sum_{n=1}^{\infty} e^{-\pi_{2}^{2}}=\infty
$$

then the boundary F of R is a set of linear measure zero. In the other words this means $R \in O_{A B}$.

Let G be a simply connected domain whose boundary is the set E of the union of two closed intervals $[\infty,-1]$ and $[1, \infty]$ and let $\cup S_{i}$ be a closed set, on the real axis, consisting of a finite number of segments $S_{i}(i=1,2, \cdots, n)$ in an open interval ($-1,1$). Denote by ($G, \bigcup_{i} S_{i}$) the ring domain whose outer boundary is E and the inner boundary is $\bigcup_{i} S_{i}$. We call it A-type ring. Let $U(z)$ be a bounded positive harmonic function in $\left(G, \bigcup_{i} S_{i}\right)$ such that $U(z)=1$ on $\bigcup_{i} S_{i}$ and $U(z)=0$ on E. Let $G(z, p)$ be the Green's function of G with pole at p. To observe the behaviour of the normal derivative of $U(z)$ at $\cup S_{i}$, we consider the Riemann surface constructed as follows: let $\left(G, \bigcup_{i} S_{i}\right)$ be the same ring as $\left(G, \bigcup_{i} S_{i}\right)$ and connect $\left(G, \bigcup_{i} S_{i}\right)$ and ($G, \bigcup_{i} S_{i}$) crosswise on $\bigcup_{i} S_{i}$. Then we obtain a two-sheeted Riemann surface R whose boundary components are Γ_{1} and Γ_{2} on E. Let $w(z)$ be a harmonic function in R such that $w(z)=0$ on Γ_{1} and $w(z)=2$ on Γ_{2}. Then $w(z) \equiv U(z)$. Hence $\left|\frac{\partial U(z)}{\partial n}\right|<0\left(\frac{1}{\sqrt{r}}\right)$ in the neighbourhood of end points of $\bigcup_{i} S_{i}$, where r is the distance between the set of end points of $\bigcup_{i} S_{i}$ and z. Therefore, we have by Green's formula

$$
U(p)=\frac{1}{2 \pi} \int_{U_{i} s_{i}} G(z, p) \frac{\partial U(z)}{\partial n} d s
$$

where the integration is taken over two sides of $\bigcup_{i} S_{i}$. Because $U(z)$ $=1$ on $\bigcup_{i} S_{i}$ and $\frac{\partial G(z, p)}{\partial n}$ is continuous and $\frac{\partial G(z, p)}{\partial n}$ has the same absolute values and opposite signature on two sides of $\bigcup_{i} S_{i}$.

In order to study the case when the measure of $\bigcup_{i} S_{i}$ of an A-type ring with given modulus is maximal, we consider rings as follows: let S_{i}^{+}or S_{i}^{-}be the set of points contained in S_{i} and lying on the positive or negative real axis and denote by $m^{+}(z)$ or $m^{-}(z)$ the linear measure of $\bigcup_{i} S_{i}^{+}$or $\bigcup_{i} S_{i}^{-}$contained in the interval $(0, z)$ or $(z, 0)$. Put $m(z)=m^{+}(z)$ or $-m^{-}(z)$ according to $z \geqq 0$ or $0<z$. Then $m(z)$ does not increase or decrease on the complementary set
of $\bigcup_{i} S_{i}$ with respect to the interval $(-1,1)$. Let S^{\prime} be the image of $\bigcup_{i} S_{i}$ by $m(z)(-1<z<1)$. Then S^{\prime} is a closed interval in $(-1,1)$. By definition, we have the following:
If $z_{1} \geqq z_{2} \geqq 0, m\left(z_{1}\right) \geqq m\left(z_{2}\right), z_{i} \geqq m\left(z_{i}\right)(i=1,2)$ and $\left|z_{1}-z_{2}\right| \geqq\left|m\left(z_{1}\right)-m\left(z_{2}\right)\right|$. If $z_{1} \leqq z_{2}<0, m\left(z_{1}\right) \leqq m\left(z_{2}\right), z_{i} \leqq m\left(z_{i}\right)(i=1,2)$ and $\left|z_{1}-z_{2}\right| \geqq\left|m\left(z_{1}\right)-m\left(z_{2}\right)\right|$. If $z_{1} \geqq 0>z_{2}, m\left(z_{1}\right) \geqq m\left(z_{2}\right), z_{1} \geqq m\left(z_{1}\right) \geqq m\left(z_{2}\right) \geqq z_{2}$ and $\left|z_{1}-z_{2}\right| \geqq\left|m\left(z_{1}\right)-m\left(z_{2}\right)\right|$.
Next, we consider the function $f(z)=\frac{-z-\alpha}{-\alpha z+1}$ by which G is invariant and $f(\alpha)=0$. Then we have by brief computation

$$
\left|\begin{array}{c}
z_{1}-z_{2} \\
-z_{1} z_{2}+1
\end{array}\right| \geqq\left|\begin{array}{c}
m\left(z_{1}\right)-m\left(z_{2}\right) \tag{1}\\
G\left(z_{1}, z_{2}\right)
\end{array}\right|=G\left(m\left(z_{1}\right), m\left(z_{2}\right)+1 .\right.
$$

Hence
for every pair of z_{1} and z_{2} in ($-1,1$).
We consider the ring domain (G, S^{\prime}) whose outer boundary is E and the inner boundary is S^{\prime}. Since $\frac{\partial U(z)}{\partial n}(>0)$ is continuous on $\bigcup_{i} S_{i}$ except at end points of $\bigcup_{i} S_{i}$ where $\frac{\partial U(z)}{\partial n}<0\left(\frac{1}{\sqrt{r}}\right)$, we can construct a positive harmonic function $\widetilde{U}(z)$ in $\left(G^{\prime}, S\right)$ such that $\tilde{U}(z)=0$ on E and $\frac{\partial \widetilde{U}(m(z))}{\partial n}=\frac{\partial U(z)}{\partial n}$ on $S^{\prime \prime}$. Then we have by (1) and by Green's formula

$$
\begin{align*}
U(p)=\frac{1}{2 \pi} \int_{U_{i} s_{i}} G(z, p) \frac{\partial U(z)}{\partial n} & d s
\end{align*} \begin{array}{|}
2 \pi & \frac{1}{S_{s^{\prime}}} G(m(z), m(p)) \frac{\partial \tilde{U}(m(z))}{\partial n} d s \\
& d s \tag{2}\\
& =\widetilde{U}(m(p))
\end{array}
$$

because $\tilde{U}(z+i y)=\tilde{U}(z-i y)$. Hence $H \supset S^{\prime}$, where H is the domain in which $\tilde{U}(z) \geqq 1$. Now the Dirichlet's integrals are

$$
\underset{\substack{G-u_{i} s_{i}}}{D}(U(z))=\int_{\underset{i}{U_{i}}} \frac{\partial U(z)}{\partial n} d s=\int_{E} \frac{\partial U(z)}{\partial n} d s=\int_{s^{\prime}} \frac{\partial \tilde{U}(z)}{\partial n} d s=\int_{E} \frac{\partial \tilde{U}(z)}{\partial n} d s
$$

and

$$
\underset{G-H}{D}(\tilde{U}(z))=\int_{E} \frac{\partial \tilde{U}(z)}{\partial n} d s=\int_{E} \frac{\partial U(z)}{\partial n} d s=\underset{G-U_{i} s_{i}}{D}(U(z))
$$

On the other hand, let $\widetilde{\widetilde{U}}(z)$ be a harmonic function in $\left(G, S^{\prime}\right)$ such that $\widetilde{\widetilde{U}}(z)=1$ on S^{\prime} and $\widetilde{\widetilde{U}}(z)=0$ on E. Then by Dirichlet's principle

$$
D_{G-S^{\prime}}(\widetilde{\widetilde{U}}(z)) \leqq D_{G-H}^{D}(\widetilde{U}(z))
$$

Translate $S^{\prime \prime}$ to a closed interval S so that S lies symmetrically with respect to the origin. Then we obtain a ring domain (G, S) whose outer boundary is E and the inner boundary is S. We call it B-type domain. Let $\hat{U}(z)$ be a harmonic function in (G, S) such that $\hat{U}(z)=1$ on S and $\hat{U}(z)=0$ on E. Then we have also ${ }_{G-S}(\hat{U}(z)) \leqq D_{G-S}(\widetilde{\tilde{U}}(z)) \leqq$ $\underset{G-U_{i} S_{i}}{D}(U(z))$ as above. Since mes $S=\operatorname{mes}\left(\bigcup_{i} S_{i}\right)$, we have the following

Lemma 1. Let $\left(G, \bigcup_{i} S_{i}\right)$ and (G, S) be ring domains of types A and B respectively such that $\bmod \left(G, \bigcup_{i} S_{i}\right)=\bmod (G, S)$. Then mes $S \geqq m e s\left(\bigcup_{i} S_{i}\right)$.

It is clear that the ratio mes $S / 2$ is a decreasing function of $\bmod (G, S)$. We denote it by $P(\bmod (G, S))$. Therefore mes $\left(\bigcup_{i} S_{i}\right) / 2 \leqq$ $\operatorname{mes} S / 2=P(\bmod (G, S))=P\left(\bmod \left(G, \bigcup_{i} S_{i}\right)\right)$.

Let (G, S) be a ring of type B, where S is a closed interval $[-p, p]$ and consider the function $f(z)=\sqrt{\frac{1+p}{2 p}}\left(\frac{z+p}{z+1}\right)$ mapping (G, S) to a ring domain $\left(\infty, 0, r, \frac{1}{r}\right)\left(\right.$ where $\left.r=\sqrt{\frac{2 p}{1+p}}\right)$ whose outer boundary is the union of closed intervals $[\infty, 0]$ and $\left[\frac{1}{r}, \infty\right]$ and the inner boundary is $\left[0, \frac{1}{r}\right]$. Let D be a rectangle: $\operatorname{Im} z \geqq 0$ with vertices $\infty, 0, r$ and $\frac{1}{r}$ and let $\bmod (D)^{2)}$ be its modulus. Then $\bmod (G, S)=$ $2 \bmod (D)$. To estimate the ratio mes $S / 2(=p)$, when $\bmod (G, S) \rightarrow 0$ in other words when $p \rightarrow 1$, we consider the behaviour of $\bmod (D)$ as $r \rightarrow 1$.

Lemma 2. $\quad \varlimsup_{r \rightarrow 1} \bmod (D) \log \frac{1}{1-r} \leqq \frac{\pi^{2}}{2}$.
By Schwarz-Christoffel's transformation, we have

$$
\begin{equation*}
\bmod (D)=\pi \int_{r}^{1} \frac{d t}{\sqrt{t(t-r)(1-r t)}} / \int_{0}^{r} \frac{d t}{\sqrt{t(r-t)(1-r t)}} \tag{3}
\end{equation*}
$$

We take $1-r$ and $\delta>0$ small enough and divide the integral in the denominator into two parts:

$$
\int_{0}^{r}=\int_{0}^{r-\delta}+\int_{r-\delta}^{r}
$$

2) We map the rectangle $D:\left[\infty, 0, \frac{1}{r}, r\right]$ onto a ring $1 \leqq \zeta \mid \leqq e^{m}$ of which $|\zeta|=e^{m}$, $|\zeta|=1$ and $1 \leqq \zeta \leqq e^{m}$ correspond to $[0, r],\left[\frac{1}{r}, \infty\right]$ and the union of $\left[r, \frac{1}{r}\right]$ and $[\infty, 0]$ respectively. In this case, we define $\bmod D$ by the modulus of this ring, i.e. by m.

Then

$$
\begin{align*}
& 2 \sqrt{\frac{r}{r-\delta}}=\frac{1}{\sqrt{r}} \int_{0}^{r-\delta} \frac{d t}{\sqrt{t}}<\int_{0}^{r-\delta}<\frac{1}{\delta \sqrt{r}} \int_{0}^{r-\delta} \frac{d t}{\sqrt{t}}=\frac{2}{\delta} \sqrt{\frac{r-\delta}{r}} \\
& \frac{1}{\sqrt{r}} \int_{r-\delta}^{r} \frac{d t}{\sqrt{(r-t)(1-r t)}}<\int_{r-\delta}^{r}<\frac{1}{\sqrt{r-\delta}} \int_{r-\delta}^{r} \frac{d t}{\sqrt{(r-t)(1-r t)}} \\
& \int_{r-\delta}^{r} \frac{d t}{\sqrt{(r-t)(1-r t)}}=\frac{2}{\sqrt{r}}\left[\log \left(\sqrt{\delta}+\sqrt{\left.\frac{1}{r}-r+\delta\right)}-\log \sqrt{\frac{1}{r}-r}\right]\right. \tag{4}
\end{align*}
$$

Hence $\frac{1}{r} \log \frac{1}{1-r}+m_{1}(r, \delta)<\int^{r}<\frac{1}{\sqrt{r(r-\delta)}} \log \frac{1}{1-r}+m_{2}(r, \delta)$
where $m_{\nu}(r, \delta)(\nu=1,2)$ remains bounded for r and δ. On the other hand,

$$
\begin{gathered}
\frac{1}{\sqrt{r} \int_{r}^{1} \frac{d t}{\sqrt{(t-r)\left(\frac{1}{r}-t\right)}}<\int_{r}^{1}<\frac{1}{r} \int_{r}^{1} \frac{d t}{\sqrt{(t-r)\left(\frac{1}{r}-t\right)}},} \\
\int_{r}^{1} \frac{d t}{\sqrt{(t-r)\left(\frac{1}{r}-t\right)}}=-2\left[\arctan \sqrt{\frac{1 / r-t}{t-r}}\right]_{r}^{1}=\pi-2 \arctan \sqrt{\frac{1}{r}} .
\end{gathered}
$$

Hence

$$
\begin{equation*}
\frac{1}{\sqrt{r}}\left(\pi-2 \arctan \sqrt{\frac{1}{r}}\right)<\int_{r}^{1}<\frac{1}{r}\left(\pi-2 \arctan \sqrt{\frac{1}{r}}\right) . \tag{5}
\end{equation*}
$$

Divide (5) by (4) and let r tend to $1, \delta$ being fixed. Then

$$
\frac{\sqrt{1-\delta} \pi^{2}}{2} \lim _{r \rightarrow 1} \bmod (D) \log \frac{1}{1-r} \leqq \varlimsup_{r \rightarrow 1} \bmod (D) \log \frac{1}{1-r} \leqq \frac{\pi^{2}}{2} .
$$

Since δ was can be chosen arbitrarily small, our assertion follows when we let δ tend to 0 .

Put $\mathfrak{M}=\bmod \left(G, \bigcup_{i} S_{i}\right)$. We consider $P(\mathfrak{M})$, when $\mathfrak{M} \rightarrow 0$, i.e. $p \rightarrow 1$; and $r \rightarrow 1$. In this case, since $r=\sqrt{\frac{2 p}{1+p}}$, and by Lemma 2 , we have a brief computation

$$
\frac{\operatorname{mes}\left(\bigcup_{i} S_{i}\right)}{2} \leqq P(\mathfrak{M})=p=\frac{r^{2}}{1-r^{2}} \leqq \frac{\left(e^{-\frac{\pi^{2}}{\mathfrak{M}}}-1\right)^{2}}{2-\left(e^{-\frac{\pi^{2}}{\mathfrak{M}}}-1\right)^{2}}=1-\varepsilon_{n},
$$

where $\varepsilon_{n} \geqq e^{-\frac{\pi^{2}}{\mathfrak{M}}}$.
Proof of the theorem. Let $G_{i_{1}, i_{2}, \cdots, i_{n}}$ be one of ring domains which are the components of $R_{n+1}-R_{n}$ whose outer boundary is $\Gamma_{i_{1}, i_{2}, \cdots, i_{n}}$ and the inner boundary is $\bigcup_{i_{n+1}} \Gamma_{i_{1}, i_{2}, \cdots, i_{n}, i_{n+1}}$. Let $L_{i_{1}, i_{2}, \cdots, i_{n}}$ and $L_{i_{1}, i_{2}, \cdots, i_{n}, i_{n+1}}$ be segments on the real axis contained in $\Gamma_{i_{1}, i_{2}, \cdots, i_{n}}$ and $\Gamma_{i_{1}, i_{2}, \cdots, i_{n}, i_{n+1}}$ respectively. Let $L_{i_{1}, i_{2}, \cdots, i_{n}}$ be the complementary set of $L_{i_{1}, i_{2}, \cdots, i_{n}}$ with respect to the real axis. Then since every $\Gamma_{i_{1}, i_{2}, \ldots, i_{n}}$ is convex, by assumption, we have

$$
M_{n} \leqq \bmod \left(G_{i_{1}, i_{2}} \cdots, i_{n}\right) \leqq \bmod \left(\widetilde{L}_{i_{1}, i_{2}, \cdots, i_{n}}, \bigcup_{i_{n+1}}^{\bigcup} L_{i_{1}, i_{2}, \cdots, i_{n}, i_{n+1}}\right),
$$

where $\left(\widetilde{L}_{i_{1}, i_{2}, \cdots, i_{n}}, \bigcup_{i_{n+1}} L_{i_{1}, i_{2}, \cdots, i_{n}, i_{n+1}}\right)$ is the ring domain whose outer boundary is $\widetilde{L}_{i_{1}, i_{2}, \cdots, i_{n}}$ and the inner boundary is $\bigcup_{i_{n+1}} L_{i_{1}, i_{2}, \cdots, i_{n}, i_{n+1}}$. Therefore by Lemma 1, mes ($\left.\bigcup_{i_{n+1}} L_{i_{1}, i_{2}, \cdots, i_{n}, i_{n+1}}\right) / \operatorname{mes} L_{i_{1}, i_{2}, \cdots, i_{n}} \leqq P\left(M_{n}\right)$ $(n \geqq 1)$. Let F be the boundary of the Riemann surface R. Then

$$
F \subset \bigcup_{i_{1}} \bigcup_{i_{2}}, \cdots, \bigcup_{i_{n}} L_{i_{1}, i_{2}, \cdots, i_{n}},(n \geqq 1)
$$

Hence

$$
\operatorname{mes} F \leqq \operatorname{mes}\left(\bigcup_{i_{1}} \bigcup_{i_{2}}, \cdots, \bigcup_{i_{n}} L_{i_{1}, i_{2}}, \cdots, i_{n}\right), \quad(n \geqq 1) .
$$

On the other hand, since mes $\left(\bigcup_{i_{n+1}} L_{i_{1}, i_{2}, \cdots, i_{n}, i_{n+1}}\right) \leqq P\left(M_{n}\right)$ mes $L_{i_{1}, i_{2}, \cdots, i_{n}}$, hence we have

$$
\operatorname{mes} F \leqq \operatorname{mes}\left(\bigcup_{i_{1}} L_{i_{1}}\right) \prod_{i=1}^{\infty} P\left(M_{i}\right)
$$

Therefore, if there are infinitely many \mathfrak{M}_{n} such that $\mathfrak{M}_{n} \geqq \delta>0$, then the theorem is clear. For there exists a positive number $\delta^{\prime} \quad\left(0<\delta^{\prime}<1\right)$ such that $P\left(\mathfrak{M}_{n}\right) \leqq 1-\delta^{\prime}$, hence mes $F=0$. If $\lim _{n=\infty} \mathfrak{M}_{n}=0$, for sufficiently small $\mathfrak{M}_{n}\left(n \geqq n_{0}\right)$ we have $P\left(M_{n}\right) \leqq 1-\varepsilon_{n} \quad\left(\varepsilon_{n}>e^{-\prod_{M_{n}^{2}}^{2}}\right)$ and

$$
\text { mes } F \leqq \operatorname{mes}\left(\bigcup_{i_{1}} L_{i_{1}}\right) \prod_{m=1}^{n_{0}} P\left(M_{m}\right) \prod_{n=n_{0}+1}^{\infty}\left(1-\hat{\vartheta}_{n}\right) .
$$

From the assumption, $\sum \varepsilon_{n}$ is divergent, therefore we have the theorem.

