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Evans.Selberg’s Theorem on Abstract Riemann Surfaces
with Positive Boundaries. I

By Zenjiro KURAMOCHI
Mathematical Institute, Osaka University

(Comm. by K. KUNUGI, M.J.A., April 12, 1956)

Let R* be a Riemann surface with a positive boundary and let
{R,.} (n--0, i, 2,...) be its exhaustion with compact relative boundaries
{R}. Put R-R*-Ro. Let N(z,p) be a positive function in R harmonic
in R except one point p e R such that N(z, p)-0 on Ro., N(z, p)+ log
Iz-pl is harmonic in a neighbourhood of 1o and the .-Dirichlet inte-
gral taken over R is minimal, where the .-Dirichlet integral is taken
with respect to N(z, p) + log 1z-1ol in a neighbourhood of p. It is

easily seen that such N(z 1o) is uniquely determined and fN(z, p) ds
R

=2rr. As in the case when R* is a Riemann surface with a null-
boundary, we define the ideal boundary point, by making use of
N(z,p), that is, if IP,} is a sequence of points in R having no
accumulation point in R+ 3R0, for which the corresponding functions
N(z, p) (i-1, 2,...) converge uniformly in every compact set of R,
we say that fP} is a fundamental sequence. Two fundamental
sequences are equivalent, if and only if, their corresponding sequences
of functions have the same limit function. The equivalent sequences
are made o correspond to an ideal boundary point. The set of all
the ideal boundary points will be denoted by B and the set R+B, by
R. The domain of definition of N(z, 1o) may now be extended by
writing N(z, p)-lim N(z, p) (z e R, p e B), where [p is any funda-

mental sequence. For p in B, the flux o N(z, p) along Ro is also

2r. The distance between two points p and p of R is defined by
N(z,
+

The topology induced by this metric is homeomorphic to the
original topology in R and we see easily that R-R/R/B and B
are closed and compact.

At first, we have the following
Lemma 1. Put N:"(z, p)-min[M, N(z, p) ]. Then the Dirichlet

integral of N(z, p) over R satisfies
.D(N’(z, p))2rM, M:>0,

for every poing of R.
In what follows, in order to introduce the harmonicity or super-

harmonicity in R (not only in R), we make some preparations as
follows.
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1. Capacity and the Equilibrium Potential of Relatively Closed
Sets in R.

Let F be a compact or non compact relatively closed set in R
having no common point with R. Denote by (z) a harmonic func-
tion in R-R0-F such that a,(z) 0 on Ro, (z) 1 on F except

possibly a subset of F of capacity zero and .,gZ_)_ =0 on R,-F.
n

Then it is proved that (z) converges o a,y(z) in mean. o,(z) and

the Dirichle integral are called the equilibriumn
potential and the capacity of F respectively. We have the following

Theorem 1. 1) IfF F, then (z) (z) and Cap(F.) Cap(F).
2) Let G be the domain G=E[z R: ,(z) >1- and let a(z)

be the equilibrium potential of G. Then
w,(z) (1 -e)wo(z),

where is a positive number such that 0el.
3) Let G be the niveau curve of w,(z) with height 1-. Then

there exists a set H in the interval [0, 1 such that mesH=0 and

n n
R

for 1- e H.
In the present paper, we consider only positive continuous func-

tion U(z) such that U(z)=O on Ro and D(U’(z))< for every M,
where U(z)=miniM, U(z).

2. Regular Domains. Let F be a compact or non compact

domain in R and let (z) be its equilibrium potential. If

() d, N is elled a regular domain. We see at once by

of heorem 1 tha here exists sequence of regular domains
=N s R: ()l-e which we call he ela domai
b the equilibrium potential, containing N of eaaeiy osiive and
ha, any eomae closed domain wih analytic relative boundaries is
lwys regular.

Suose continuous function U() in R such ha U()=0 on
Ro, D(U())< nd a regular domain D. Le Uff() be a harmonic
rune,ion in R-D sueh ht U(z)=U(z) on Ro+D nd U()has
he minimal Diriehle integral over R-D. hen evidently,
is deermined uniquely. Pu.(z)=lim U(). 0n he oher hand,

le N(, ) be a funegion in R-D such ,ha Nv(, p) is harmonic
in R-D exee where N(, )+ log ]-i is harmonic, N(, )=0
on Ro+D and N(, ) has ,he minimal .-DirieNe integral, where
i is aken wigh resee o N(, )+lo iz-l in neihbourhood of. hen we hae he followin

Theorem 2. U.(p)=
OD
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3. Harmonicity and Superharmonicity in R. For any compact
or non compact regular domain D, if U(z)- U,(z) or :> U,(z), we

say that U(z) is harmonic or superharmonic in R respectively. Then
we have the following

Theorem 3. N(z, p) is superharmonic in R, more generally

(z, p)d(p) is superharmonic in R, where 0.
Let U(z) be a positive harmonic function in R and superharmonic

in R vanishing on Ro and let D be a relatively closed set in R of
capacity positive. If D is regular, we define U,(z) as in Theorem 2
and if D is not regular, we define U(z) as follows- suppose that IDa}
is a sequence of decreasing regular domains generated by the equilib-
rium potential o,(z) of D. Let U,(z) be a harmonic function in R-D
such that U(z)- U(z) on D+Ro and U(z) has the minimal
Dirichlet integral over R-D. Then by the superharmonicity of U(z)
(which is easily verified as in space by the superharmonic of U(z)), we
have U(z)<U(z) and U(U+(z)) for DD Let M
tend to . Then we have at once U.(U..+(z))-Up.+(z). Hence
U.(z) is decreasing as D.. decreases. We define U.(z)by li__mUa(z).
Then we have the following

Theorem 4. If U(z) and V(z) are positive, U(z)-V(z)-O on Ro
and superharmonic in R, then

2) U(z)>_ v(z), U.(z)_>_ V.(z).
U.(z) + V.(z)-.(U(z) + V(z)).

4) I,f C__O, (CUa(z))-a(CU(z)).
5) For D and D:, U+(z)U(z)+U.(z).
6) If DD, then ,(U(z))-Ua(z) and Ua(z)U,.(z).
7) Let (D} be an increasing sequence of regular domains such

that D,-Ez R: o(z)l-e, and D Do, where Do-Ez R:
o(z)l-o is also regular domain. Then U(z) Upo(Z).

4. Integral Representation of Superharmonic Functions in R.
Let A be a -closed subset o B (closed with respect o -metric).

PU A.-E[z R--: (z, A),i. Then A is a relatively closed set

and A-A. Let .(z) be the equilibrium potential of A. Then

we see that (z) converges to (z) in mean. (z) is called the equi-

librium potential of A and v  (z)ds is called capacity.n
For -closed subset A of B, we define U(Z) by lim Ua(z), where

G-Ez R: (z):>l- and lime-0. By definition GA. Put
[-) G,--A* and call A* the capacity closure of A. Then we have the

following
Theorem 5. 1) Assertions of Theorem hold for U(z).
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A$

for all points z in R. The total mass (A*) is equal to _!__f U(Z)ds"
2r

Ro
n

2’) iN(z,
A

U(z) fN(z,

5. Minimal Functions. Let U(z) be a function which is har-

monic in R and superharmonic in R. f U(z) V(z) implies V(z)-kU(z)
(kl) for every function V(z) such that both V(z) and U(z)-V(z) are

harmonic and superharmonic in R, U(z) is called a minimal func-
tion. We shall obtain characteristics of minimal functions.

Theorem 6. Suppose that U(z) is positive and minimal. Let A
be a -closed set of B. If now the following relation of the form
holds

U(z) U(z) f N(z, p) d(p) > O, z R,

(1 , U(z) ds) N(z,q), where qisapoint of A*.then U(z)- -2 n
Corollary. Every minimal function in R is a positive multiple

of some N(z, q) (q e B).
1 f Nq(z, q) ds.Put A=q and define the function @(q) for q in B as

OR

Then we have
Theorem 7. 1) (q) has only two possible values 1 and O.
2) Denoting by Bo the set of points of B for which (q)-O, Bo

is void or an F.
We consider B where B is Che set of points of which (q)-l.

Then

Theorem 8. 1) If U(z) is given by [N(z, p)d,(p), then U,o(Z)
o

=0 and U(z)=]N(z,p)d(p) for every harmonic in R and superhar-

monic fanction U(z) in R.
2) Cap(Bo)- 0.

Hence every positive mass distribution on Bo can be replaced by that
on B. But the present author can not prove the uniqueness of mass
distribution. In what follows, we shall prove usefull properties of
points in B.

Theorem 9. 1) N(z, p) is minimal or not according to p e B or
not.
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2) Let V(p)=-E[z R: N(z, p)m] and v(p)--E z R: $z, p)
<: 1 Then if p is a minimal point,

p)=N(z, p)
for every m less than sup N(z, p)=M’.

2’) There exists a set H in 0, M’ such that mesE=0 and that

if m E, then VN(z, p)_. 2, for minimal N(z, p) or N(z, p)
J n

pR.
2") For every V(p), there exists a number n such that V(p)

(v(p) R), for minima N(z, p) or N(z, p) with p R.
6. The Function N(z, p). Assume that p and q are contained

in R. Let N,(z,p)and N(z,q) be functions in R,,-Ro such that
N,(z, p) and N,(z,q) are harmonic in R-Ro except p and q re-
spectively where N,(z, p) and N,(z, q) have logarithmic singularities

and N(z, p)_N(z, q)=0 on YR.. Then we have by Green’s for-n n
mula N,(q, p)=N(p, q). Since N(z, p)N(z, p) as n, we have
(q, p)-N(p, q) by letting n-. Let [q} be a fundamental se-
quence determining a point q e B. Then, since N(z, q) tends to
Niz, q) at every point z of R, N(p, q)= N(q, p) implies that N(z, p)
s limit as z tends to q. This limit is denoted by N(q, p). Hence
if pR, N(z,p) has limit as z(eR) tends to q with respect o
8-metric. We define the value N(z, p) at q by this limit. There-

fore, if pR, then N(z,p) is defined at every point z of R and
N(z, p) is -continuous, except z=p. In what follows, we shall study
the case when p e B.

Suppose that p is minimal. Then by 2) of Theorem 9 N(z, p)
m

can be considered as the equilibrium potential of V(p) for every m

le than sup N(z,p). Let V(p)be relar. V(p) may consist of
zR

at most enumerably infinite number of domains D (k=1,2,...).
N(z, p) can not be a constant in every D, hence there exists a
constant m depending on D such that D contains some components
D’ of V,(p). By 2) of Theorem 9 N(z, p) can be considered as the
equilibrium potential of D’ with respect o D, that is, N(z, p)-m=0
on D, N(z, p)-m’-m on D’ and N(z, p) has the minimal Dirichlet
integral taken over D-D’. By the regularity of V(p)

 imf VN(z, ( )
n n

OVm(P)(Rn-Ro)
where N(z, p) is harmonic in R Ro- V,(p) (m’ >m) (z, p) 0 on
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Ro and N,(z, p)=m’ on 3V,(p) and N,(z, p) =0 on R-V+(p). Onn
the other hand, by Fatou’s lemma

limf N.(z, >f
ODk (Rn-RO) ODk

Hence by (1), for every domain D,
 i,mf

OD Rn R ODk

Let N,.(, z) be a function in D (R-Ro) such that N,.(, z)-0

on D(R-Ro)+Ro, N,.(,z)=0 on R,D and N,.(,z) isn
harmonic in D(R-Ro) except p where N,.n($, z) has a logarithmic
singularity. Then there exists a constant L such that

L(N,(, z)-m)N,.(, z) in (D (R-Ro))- V(z),
where V@) is a suitable neighbourhood of z. Hence

lim n ds- lim ds. ( 2 )
n= OD&(Rn_Ro OD& n

We call N.($, z)=limN.,(, z)he Green’s function of D with pole

at z. Apply the Green’s formula to N(, q)and N(, z). Then by
(2) we have

1 . N(Z, q) N(, z) ds< or -N(z, q)
2 n

according to q e D or not. Let i. Then by Fatou’s lemma

-1 f N(," q) Nv(,n z) riseN(z, q). ( 3 )
OD k

Let N,(z, q) be a harmonic function in D(R,-Ro) such that

Nn(Z,q)=N(z,q) on OD(R,-Ro) and N,(z,q)=0 on R,D.n
Then D(N.,(z, q))2M by Dirichlet principle. Let n. Then

N.,(z, q) tends to Ng.(z, q) in every domain D and the sum of Diri-
chlet integrals of N.(z, q) over D is less than 2M. For simplicity,
we denote by Nv((z,q) the function being equal to N$.(z, q) in
every domain D. Let V,(p) be a regular domain such that
Then we have by Green’s formula

N,)(z, q) n]

aVm(p) OVm
By letting M and by (3)

f N(z,q) asg--f N(z,q) ds


