## 53. Evans-Selberg's Theorem on Abstract Riemann Surfaces with Positive Boundaries. I

By Zenjiro KURAMOCHI Mathematical Institute, Osaka University (Comm. by K. KUNUGI, M.J.A., April 12, 1956)

Let  $R^*$  be a Riemann surface with a positive boundary and let  $\{R_n\}$   $(n=0, 1, 2, \cdots)$  be its exhaustion with compact relative boundaries  $\{\partial R_n\}$ . Put  $R=R^*-R_0$ . Let N(z,p) be a positive function in R harmonic in R except one point  $p \in R$  such that N(z,p)=0 on  $\partial R_0$ ,  $N(z,p)+\log |z-p|$  is harmonic in a neighbourhood of p and the \*-Dirichlet integral taken over R is minimal, where the \*-Dirichlet integral is taken with respect to  $N(z,p)+\log |z-p|$  in a neighbourhood of p. It is easily seen that such N(z,p) is uniquely determined and  $\int_{\partial R_0} \frac{\partial N(z,p)}{\partial n} ds$ 

 $=2\pi$ . As in the case when  $R^*$  is a Riemann surface with a nullboundary, we define the ideal boundary point, by making use of N(z, p), that is, if  $\{p_i\}$  is a sequence of points in R having no accumulation point in  $R + \partial R_0$ , for which the corresponding functions  $N(z, p_i)$   $(i=1, 2, \cdots)$  converge uniformly in every compact set of R, we say that  $\{p_i\}$  is a fundamental sequence. Two fundamental sequences are equivalent, if and only if, their corresponding sequences of functions have the same limit function. The equivalent sequences are made to correspond to an ideal boundary point. The set of all the ideal boundary points will be denoted by B and the set R+B, by R. The domain of definition of N(z, p) may now be extended by writing  $N(z, p) = \lim N(z, p_i)$   $(z \in R, p \in B)$ , where  $\{p_i\}$  is any fundamental sequence. For p in B, the flux of N(z, p) along  $\partial R_0$  is also The distance between two points  $p_1$  and  $p_2$  of  $\overline{R}$  is defined by  $2\pi$ .

$$\delta(p_1,\ p_2) \!=\! \sup_{z \in R_1 - R_0} \! \left| rac{N\!(z,\ p_1)}{1 \!+\! N\!(z,\ p_1)} \!-\! rac{N\!(z,\ p_2)}{1 \!+\! N\!(z,\ p_2)} 
ight|.$$

The topology induced by this metric is homeomorphic to the original topology in R and we see easily that  $R-R_1+\partial R_1+B$  and B are closed and compact.

At first, we have the following

Lemma 1. Put  $N^{\mathcal{M}}(z, p) = \min[M, N(z, p)]$ . Then the Dirichlet integral of  $N^{\mathcal{M}}(z, p)$  over R satisfies

$$D(N^{\scriptscriptstyle M}(z,p)){\leq}2\pi M,\qquad M{\geq}0,$$

for every point of  $\overline{R}$ .

In what follows, in order to introduce the harmonicity or superharmonicity in  $\overline{R}$  (not only in R), we make some preparations as follows. No. 4] Evans-Selberg's Theorem on Abstract Riemann Surfaces. I

1. Capacity and the Equilibrium Potential of Relatively Closed Sets in R.

Let F be a compact or non compact relatively closed set in Rhaving no common point with  $R_1$ . Denote by  $\omega_n(z)$  a harmonic function in  $R_n - R_0 - F$  such that  $\omega_n(z) = 0$  on  $\partial R_0$ ,  $\omega_n(z) = 1$  on F except possibly a subset of F of capacity zero and  $\frac{\partial \omega_n(z)}{\partial n} = 0$  on  $\partial R_n - F$ . Then it is proved that  $\omega_n(z)$  converges to  $\omega_F(z)$  in mean.  $\omega_F(z)$  and the Dirichlet integral  $D(\omega_F(z)) = \int_{\partial R_0} \frac{\partial \omega_F(z)}{\partial n} ds$  are called the equilibrium potential and the capacity of F respectively. We have the following

Theorem 1. 1) If  $F_n \uparrow F$ , then  $\omega_{F_n}(z) \uparrow \omega_F(z)$  and  $\operatorname{Cap}(F_n) \uparrow \operatorname{Cap}(F)$ .

2) Let  $G_{\varepsilon}$  be the domain  $G_{\varepsilon} = E[z \in R; \omega_{F}(z) > 1-\varepsilon]$  and let  $\omega_{G_{\varepsilon}}(z)$  be the equilibrium potential of  $G_{\varepsilon}$ . Then

$$_{F}(z)=(1-\varepsilon)\omega_{G_{z}}(z),$$

where  $\varepsilon$  is a positive number such that  $0 \leq \varepsilon \leq 1$ .

Ø

3) Let  $\partial G_{\varepsilon}$  be the niveau curve of  $\omega_F(z)$  with height  $1-\varepsilon$ . Then there exists a set H in the interval [0,1] such that mes H=0 and

$$\operatorname{Cap}(F) = \int_{\partial R_0} \frac{\partial \omega_F(z)}{\partial n} ds = \int_{\partial G_\varepsilon} \frac{\partial \omega_F(z)}{\partial n} ds$$

for  $1-\varepsilon \notin H$ .

In the present paper, we consider only positive continuous function U(z) such that U(z)=0 on  $\partial R_0$  and  $D(U^{M}(z)) < \infty$  for every M, where  $U^{M}(z)=\min[M, U(z)]$ .

2. Regular Domains. Let F be a compact or non compact domain in R and let  $\omega_F(z)$  be its equilibrium potential. If  $\int_{\partial F} \frac{\partial \omega_F(z)}{\partial n} ds$  $= \int_{\partial R_0} \frac{\partial \omega_F(z)}{\partial n} ds$ , F is called a regular domain. We see at once by 3) of Theorem 1 that there exists a sequence of regular domains G

of Theorem 1 that there exists a sequence of regular domains  $G_{\varepsilon} = E[z \in R; \omega_F(z) \ge 1 - \varepsilon]$  which we call the *regular domains generated* by the equilibrium potential, containing F of capacity positive and that any compact closed domain with analytic relative boundaries is always regular.

Suppose a continuous function U(z) in R such that U(z)=0 on  $\partial R_0$ ,  $D(U^{M}(z)) < \infty$  and a regular domain D. Let  $U_D^{M}(z)$  be a harmonic function in R-D such that  $U_D^{M}(z)=U^{M}(z)$  on  $\partial R_0+\partial D$  and  $U_D^{M}(z)$  has the minimal Dirichlet integral over R-D. Then evidently,  $U_D^{M}(z)$  is determined uniquely. Put  $U_D(z) = \lim_{M \to \infty} U_D^{M}(z)$ . On the other hand, let  $N^D(z, p)$  be a function in R-D such that  $N^D(z, p)$  is harmonic in R-D such that  $N^D(z, p)$  is harmonic in R-D such that  $N^D(z, p)$  is harmonic in R-D and  $N^D(z, p)$  has the minimal \*-Dirichlet integral, where it is taken with respect to  $N^D(z, p) + \log |z-p|$  in a neighbourhood of p. Then we have the following

Theorem 2. 
$$U_D(p) = \frac{1}{2\pi} \int_{\partial D} U(z) \frac{\partial N^D(z, p)}{\partial n} ds.$$

## Z. KURAMOCHI

3. Harmonicity and Superharmonicity in  $\overline{R}$ . For any compact or non compact regular domain D, if  $U(z) = U_D(z)$  or  $\geq U_D(z)$ , we say that U(z) is harmonic or superharmonic in  $\overline{R}$  respectively. Then we have the following

Theorem 3. N(z, p) is superharmonic in  $\overline{R}$ , more generally  $\int N(z, p_a)d\mu(p_a)$  is superharmonic in  $\overline{R}$ , where  $\mu \ge 0$ .

Let U(z) be a positive harmonic function in R and superharmonic in  $\overline{R}$  vanishing on  $\partial R_0$  and let D be a relatively closed set in R of capacity positive. If D is regular, we define  $U_D(z)$  as in Theorem 2 and if D is not regular, we define  $U_D(z)$  as follows: suppose that  $\{D_n\}$ is a sequence of decreasing regular domains generated by the equilibrium potential  $\omega_D(z)$  of D. Let  $U_{D_n}^M(z)$  be a harmonic function in  $R - D_n$ such that  $U_{D_n}^M(z) = U^M(z)$  on  $\partial D_n + \partial R_0$  and  $U_{D_n}^M(z)$  has the minimal Dirichlet integral over  $R - D_n$ . Then by the superharmonic of U(z), we have  $U_{D_n}^M(z) \leq U^M(z)$  and  $U_{D_n}(U_{D_{n+i}}^M(z)) = U_{D_{n+i}}^M(z) = U_{D_{n+i}}(z)$ . Let Mtend to  $\infty$ . Then we have at once  $U_{D_n}(U_{D_{n+i}}^D(z)) = U_{D_{n+i}}(z)$ . Hence  $U_{D_n}(z)$  is decreasing as  $D_{D_n}$  decreases. We define  $U_D(z)$  by  $\lim_{n \to \infty} U_{D_n}(z)$ . Then we have the following

Theorem 4. If U(z) and V(z) are positive, U(z)=V(z)=0 on  $\partial R_0$ and superharmonic in  $\overline{R}$ , then

- 1)  $U_D(z) \leq U(z)$ .
- 2) If  $U(z) \ge V(z)$ ,  $U_D(z) \ge V_D(z)$ .
- 3)  $U_D(z) + V_D(z) = {}_D(U(z) + V(z)).$
- 4) If  $C \ge 0$ ,  $(CU_D(z)) = D(CU(z))$ .
- 5) For  $D_1$  and  $D_2$ ,  $U_{D_1+D_2}(z) \leq U_{D_1}(z) + U_{D_2}(z)$ .
- 6) If  $D_1 \supseteq D_2$ , then  $D_1(U_{D_2}(z)) = U_{D_2}(z)$  and  $U_{D_1}(z) \ge U_{D_2}(z)$ .

7) Let  $\{D_n\}$  be an increasing sequence of regular domains such that  $D_n = E[z \in R; \omega_D(z) \ge 1 - \varepsilon_n]$  and  $D_n \uparrow D_0$ , where  $D_0 = E[z \in R; \omega_D(z) \ge 1 - \varepsilon_0]$  is also regular domain. Then  $U_{D_n}(z) \uparrow U_{D_0}(z)$ .

4. Integral Representation of Superharmonic Functions in  $\overline{R}$ .

Let A be a  $\delta$ -closed subset of B (closed with respect to  $\delta$ -metric). Put  $A_n = E\left[z \in \overline{R}: \delta(z, A) \leq \frac{1}{n}\right]$ . Then  $A_n$  is a relatively closed set and  $\bigcap_n A_n = A$ . Let  $\omega_{A_n}(z)$  be the equilibrium potential of  $A_n$ . Then we see that  $\omega_{A_n}(z)$  converges to  $\omega_A(z)$  in mean.  $\omega_A(z)$  is called the equilibrium potential of A and  $D(\omega_A(z)) = \int_{\partial R_0} \frac{\partial \omega_A(z)}{\partial n} ds$  is called capacity. For  $\delta$ -closed subset A of B, we define  $U_A(z)$  by  $\lim_{n \to \infty} U_{G_n}(z)$ , where  $G_n = E[z \in R: \omega_{A_n}(z) \geq 1 - \varepsilon_n]$  and  $\lim_{n \to \infty} \varepsilon_n = 0$ . By definition  $G_n \supset A$ . Put  $\bigcap_{n=1}^{\infty} G_n = A^*$  and call  $A^*$  the capacity closure of A. Then we have the following

Theorem 5. 1) Assertions of Theorem 4 hold for  $U_A(z)$ .

No. 4]

2) 
$$U_{A}(z) = \int_{A^{*}} N(z, p) d\mu(p)$$

for all points z in R. The total mass  $\mu(A^*)$  is equal to  $\frac{1}{2\pi} \int_{\partial B_0} \frac{\partial U_A(z)}{\partial n} ds$ .

$$\mathscr{D}') \qquad \qquad \omega_A(z) = \int_A N(z, p) d\mu(p).$$

3) 
$$U(z) = \int_{B} N(z, p) d\mu(p).$$

5. Minimal Functions. Let U(z) be a function which is harmonic in R and superharmonic in  $\overline{R}$ . If  $U(z) \ge V(z)$  implies V(z) = kU(z) $(k \le 1)$  for every function V(z) such that both V(z) and U(z) - V(z) are harmonic and superharmonic in  $\overline{R}$ , U(z) is called a minimal function. We shall obtain characteristics of minimal functions.

Theorem 6. Suppose that U(z) is positive and minimal. Let A be a  $\delta$ -closed set of B. If now the following relation of the form holds

$$U(z) \ge U_A(z) = \int_{A^*} N(z, p) d\mu(p) > 0, \qquad z \in R,$$

then  $U(z) = \left(\frac{1}{2\pi} \int_{\partial R_0} \frac{\partial U(z)}{\partial n} ds\right) N(z,q)$ , where q is a point of  $A^*$ .

Corollary. Every minimal function in  $\overline{R}$  is a positive multiple of some N(z, q)  $(q \in B)$ .

Put A = q and define the function  $\psi(q)$  for q in B as  $\frac{1}{2\pi} \int_{\partial R_0} \frac{\partial N_q(z,q)}{\partial n} ds$ .

Then we have

2)

Theorem 7. 1)  $\psi(q)$  has only two possible values 1 and 0.

2) Denoting by  $B_0$  the set of points of B for which  $\psi(q)=0$ ,  $B_0$  is void or an  $F_{\sigma}$ .

We consider  $B_1$  where  $B_1$  is the set of points of which  $\psi(q)=1$ . Then

Theorem 8. 1) If U(z) is given by  $\frac{1}{2\pi} \int_{B_0} N(z, p) d\mu(p)$ , then  $U_{B_0}(z) = 0$  and  $U(z) = \int_{B_1} N(z, p) d\mu(p)$  for every harmonic in R and superharmonic

monic function U(z) in  $\overline{R}$ .

 $\operatorname{Cap}(B_0) = 0.$ 

Hence every positive mass distribution on  $B_0$  can be replaced by that on  $B_1$ . But the present author can not prove the uniqueness of mass distribution. In what follows, we shall prove useful properties of points in  $B_1$ .

Theorem 9. 1) N(z, p) is minimal or not according to  $p \in B_1$  or not.

231

Z. KURAMOCHI

[Vol. 32,

2) Let  $V_m(p) = E[z \in R; N(z, p) \ge m]$  and  $v_n(p) = E[z \in \overline{R}; \delta(z, p) \le \frac{1}{n}]$ . Then if p is a minimal point,

$$N_{V_m(p)}(z, p) = N(z, p)$$

for every m less than  $\sup_{z \in R} N(z, p) = M'$ .

2') There exists a set H in [0, M'] such that  $\operatorname{mes} E = 0$  and that if  $m \notin E$ , then  $\int_{\partial V_m(p)} \frac{\partial N(z, p)}{\partial n} = 2\pi$ , for minimal N(z, p) or N(z, p) with  $p \in R$ .

2'') For every  $V_m(p)$ , there exists a number n such that  $V_m(p) = (v_n(p) \cap R)$ , for minimal N(z, p) or N(z, p) with  $p \in R$ .

6. The Function N(z, p). Assume that p and q are contained in R. Let  $N_n(z, p)$  and  $N_n(z, q)$  be functions in  $R_n - R_0$  such that  $N_n(z, p)$  and  $N_n(z, q)$  are harmonic in  $R_n - R_0$  except p and q respectively where  $N_n(z, p)$  and  $N_n(z, q)$  have logarithmic singularities and  $\frac{\partial N_n(z, p)}{\partial x_n(z, q)} = 0$  on  $\partial R_n$ . Then we have by Green's for- $\partial n$  $\partial n$ mula  $N_n(q, p) = N_n(p, q)$ . Since  $N_n(z, p) \rightarrow N(z, p)$  as  $n \rightarrow \infty$ , we have N(q, p) = N(p, q) by letting  $n \to \infty$ . Let  $\{q_i\}$  be a fundamental sequence determining a point  $q \in B$ . Then, since  $N(z, q_i)$  tends to N(z,q) at every point z of R,  $N(p,q_i) = N(q_i, p)$  implies that N(z, p)has limit as z tends to q. This limit is denoted by N(q, p). Hence if  $p \in R$ , N(z, p) has limit as  $z(\in \overline{R})$  tends to q with respect to  $\delta$ -metric. We define the value N(z, p) at q by this limit. Therefore, if  $p \in R$ , then N(z, p) is defined at every point z of R and N(z, p) is  $\delta$ -continuous, except z=p. In what follows, we shall study the case when  $p \in B$ .

Suppose that p is minimal. Then by 2) of Theorem 9  $\frac{N(z,p)}{m}$ can be considered as the equilibrium potential of  $V_m(p)$  for every mless than  $\sup_{z\in R} N(z,p)$ . Let  $V_m(p)$  be regular.  $V_m(p)$  may consist of at most enumerably infinite number of domains  $D_k$   $(k=1,2,\cdots)$ . N(z,p) can not be a constant in every  $D_k$ , hence there exists a constant  $m_k$  depending on  $D_k$  such that  $D_k$  contains some components D' of  $V_{m'}(p)$ . By 2) of Theorem 9 N(z,p) can be considered as the equilibrium potential of D' with respect to  $D_k$ , that is, N(z,p)-m=0on  $\partial D_k$ , N(z,p)=m'-m on  $\partial D'$  and N(z,p) has the minimal Dirichlet integral taken over  $D_k-D'$ . By the regularity of  $V_m(p)$ 

$$\lim_{n \to \infty} \int_{\partial V_m(p) \cap (R_n - R_0)} \frac{\partial N_n(z, p)}{\partial n} ds = \int_{\partial V_m(p)} \frac{\partial N(z, p)}{\partial n} ds, \qquad (1)$$

where  $N_n(z, p)$  is harmonic in  $R_n - R_0 - V_{m'}(p)$  (m' > m)  $N_n(z, p) = 0$  on

No. 4] Evans-Selberg's Theorem on Abstract Riemann Surfaces. I

 $\partial R_0$  and  $N_n(z, p) = m'$  on  $\partial V_{m'}(p)$  and  $\frac{\partial N_n(z, p)}{\partial n} = 0$  on  $\partial R_n - V_m(p)$ . On the other hand, by Fatou's lemma

$$\lim_{n=\infty}\int_{\partial D_k\cap (R_n-R_0)}\frac{\partial N_n(z,p)}{\partial n}ds \ge \int_{\partial D_k}\frac{\partial N(z,p)}{\partial n}ds$$

Hence by (1), for every domain  $D_k$ ,  $\partial N(z, n)$ 

$$\lim_{n\to\infty}\int_{\partial D_k\cap(R_n-R_0)}\frac{\partial N_n(z,p)}{\partial n}ds=\int_{\partial D_k}\frac{\partial N(z,p)}{\partial n}ds.$$

Let  $N_{D,n}(\zeta, z)$  be a function in  $D_k \cap (R_n - R_0)$  such that  $N_{D,n}(\zeta, z) = 0$ on  $\partial D_k \cap (R_n - R_0) + \partial R_0$ ,  $\frac{\partial N_{D,n}(\zeta, z)}{\partial n} = 0$  on  $\partial R_n \cap D_k$  and  $N_{D,n}(\zeta, z)$  is harmonic in  $D_k \cap (R_n - R_0)$  except p where  $N_{D,n}(\zeta, z)$  has a logarithmic

harmonic in  $D_k[(R_n - R_0)$  except p where  $N_{D,n}(\zeta, z)$  has a logarithmic singularity. Then there exists a constant L such that

 $L(N_n(\zeta, z) - m) \ge N_{D,n}(\zeta, z)$  in  $(D_k \cap (R_n - R_0)) - V(z)$ , where V(z) is a suitable neighbourhood of z. Hence

$$\lim_{n=\infty}\int_{\partial D_{k}\cap(R_{n}-R_{0})}\frac{\partial N_{D,n}(\zeta,z)}{\partial n}ds=\int_{\partial D_{k}}\lim_{n=\infty}\frac{N_{D,n}(\zeta,z)}{\partial n}ds.$$
 (2)

We call  $N_D(\zeta, z) = \lim_{n \to \infty} N_{D,n}(\zeta, z)$  the Green's function of  $D_k$  with pole at z. Apply the Green's formula to  $N(\zeta, q_i)$  and  $N_D(\zeta, z)$ . Then by (2) we have

according to  $q_i \in D_k^{\sim}$  or not. Let  $i \rightarrow \infty$ . Then by Fatou's lemma

$$\frac{1}{2\pi} \int_{\partial D_{z}} N(\zeta, q) \frac{\partial N_{D}(\zeta, z)}{\partial n} ds \leq N(z, q).$$
(3)

Let  $N_{D,n}^{M}(z,q)$  be a harmonic function in  $D_{k} \cap (R_{n}-R_{0})$  such that  $N_{D,n}^{M}(z,q) = N^{u}(z,q)$  on  $\partial D_{k} \cap (R_{n}-R_{0})$  and  $\frac{\partial N_{D,n}^{M}(z,q)}{\partial n} = 0$  on  $\partial R_{n} \cap D_{k}$ . Then  $\sum_{k} D(N_{D,k,n}^{M}(z,q)) \leq 2\pi M$  by Dirichlet principle. Let  $n \to \infty$ . Then  $N_{D,k,n}^{M}(z,q)$  tends to  $N_{D,k}^{M}(z,q)$  in every domain  $D_{k}$  and the sum of Dirichlet integrals of  $N_{D,k}^{M}(z,q)$  over  $D_{k}$  is less than  $2\pi M$ . For simplicity, we denote by  $N_{V_{m}(p)}^{M}(z,q)$  the function being equal to  $N_{D,k}^{M}(z,q)$  in every domain  $D_{k}$ . Let  $V_{m'}(p)$  be a regular domain such that m' > m. Then we have by Green's formula

$$\int_{\partial V_m(p)} N^{\mathcal{M}}_{V_m(p)}(z,q) \frac{\partial N(z,p)}{\partial n} ds = \int_{\partial V_{m'}(p)} N^{\mathcal{M}}_{V_m(p)}(z,q) \frac{\partial N(z,p)}{\partial n} ds.$$

By letting  $M \rightarrow \infty$  and by (3)

$$egin{aligned} N_{\mathcal{V}_m(p)}(p,q) =& rac{1}{2\pi} \int\limits_{ec{\partial}\mathcal{V}_m(p)} N(z,q) rac{\partial N(z,p)}{\partial n} ds \leq & rac{1}{2\pi} \int\limits_{ec{\partial}\mathcal{V}_{m'(p)}} N(z,q) rac{\partial N(z,p)}{\partial n} ds \ &= & N_{\mathcal{V}_{m'(p)}}(p,q). \end{aligned}$$

233