90. Notes on Topological Spaces. IV. Function Semiring on Topological Spaces

By Kiyoshi ISÉKI and Yasue MIYANAGA (Comm. by K. KUNUGI, M.J.A., June 12, 1956)

In our previous paper [3], we generalized some results on the theory of the space of maximal ideals of a semiring by W. Slowikowski and W. Zawadowski [4]. In this paper, we shall consider the relation between a function semiring on a normal space S and a lattice of closed sets in S. By using the result of it, we shall prove some theorems on function semiring. Such a consideration for function ring was also treated by G. Higman [2].

Let S be a T_2 -space. Let $C^+(S)$ be the set of all continuous, bounded, non-negative real-valued functions on S, and let L be the lattice of all closed sets in S. $C^+(S)$ is a semiring^{*)} with respect to the usual addition and multiplication and further $C^+(S)$ is a positive semiring in the sense of W. Slowikowski and W. Zawadowski [4].

We assume that we are familiar with the notions of proper ideals, maximal ideals of $C^+(S)$ and proper filter, ultrafilter of L(see, K. Iséki and Y. Miyanaga [3], and N. Bourbaki [1]). Following G. Higman [2], we shall first give a correspondence between ideals of $C^+(S)$ and filters of L.

Let I be an ideal of $C^+(S)$, then we shall define a set I^* of closed sets of S as follows: $A \in I^*$ if and only if, for any closed set F not meeting A, there is a function f of I such that the lower bound of f on F is positive, i.e. inf f(x) > 0 on F.

Let J be a filter of L, and $f \in J^*$ if and only if, for every positive ε , there is a closed set A of J such that $f < \varepsilon$ on A.

Let I be a proper ideal of $C^+(S)$, and $A \in I^*$, then it is clear that $A \cup B \in I^*$ for every $B \in L$. Let A, $B \in I^*$, and let F be a closed set such that $F_{\frown}(A \cap B) = 0$. Then $F_{\frown}B$ does not meet A, therefore there is a function $f_1 \in I$ such that the lower bound α_1 of f_1 on $F_{\frown}B$ is positive. For $\frac{1}{2}\alpha_1$, let $F_1 = \left\{ x \mid f_1(x) \leq \frac{1}{2}\alpha_1 \right\}$, then Fis non-empty closed set and $F_{\frown}F_1$ does not meet B. Therefore there is a function f_2 of L such that $\inf f_2 = \alpha_2$ is positive on $F_{\frown}F_1$. Since I is an ideal, $f_1 + f_2 \in I$ and $f_1(x) + f_2(x) \geq \min\left(\frac{1}{2}\alpha_1, \alpha_2\right)$ on F. Hence I^* is a filter.

^{*)} For the precise definition of semirings, see K. Iséki and Y. Miyanaga [3].

No. 6]

We shall show $(O)^* = S$. Suppose $(O)^* \ni A \neq S$, then, for a point x such that $x \in S-A$, O(p)=0 and hence $A \notin (O)^*$. By the definition of *-operation, $(O)^* \supset (S)$. Hence $(O)^* = S$.

Suppose that $I \neq (O)$, then *I* contains a function *f* such that $f(x) = \alpha > 0$ for some point *x*. The set $F = \left\{ x \mid f(x) \leq \frac{\alpha}{2} \right\}$ is closed and $F \neq S$, and $F \in I^*$. This implies $I^* \neq (S)$. Therefore, if $I^* = (S)$, then I = (O). Clearly $(C^+(S))^* = L$. On the other hand, let $I^* = L$, then I^* contains the empty set. By the definition of *-operation, *I* contains a function *f* such that $\inf f > 0$ on *S*. Hence $C^+(S) \ni f^{-1}$ and $ff^{-1} = 1$ is contained in *I*. Therefore $I = C^+(S)$. This implies the following

Proposition 1. I^* is a filter of L. I^* is a proper filter if and only if I is a proper ideal.

Now we shall prove the similar proposition for ideals in $C^+(S)$. Let J be a filter of L, and let $f, g \in J$, then, for any positive ε , there are two closed sets A, B of J such that $f(x) < \frac{1}{2}\varepsilon$ on A and $g(x) < \frac{1}{2}\varepsilon$ on B. Since J is a filter, $A \cap B \in J$ and $f(x) + g(x) < \varepsilon$ on $A \cap B$. Therefore $f + g \in J^0$. Let $f \in J^0$ and $g \in C^+(S), g < \delta$, then, for any positive ε , there is a closed set A such that $f(x) < \frac{\varepsilon}{\delta}$ on A. Hence $f(x) g(x) < J^0$ on A. Therefore $fg \in J^0$. This shows that J^0 is an ideal.

To prove that J^0 is a proper ideal, if and only if J is a proper filter, we shall assume S is a completely regular space. We shall show the following four relations.

1) $(S)^{\circ} = (O).$

Let $f \in (S)^0$, then, for any positive ε , $f(x) < \varepsilon$ on S. Hence f=0. 2) $J^0=(O)$ implies J=(S).

Suppose that $J \ni A \neq S$, then, by the completely regularity of S, there is a non-zero function on S such that f(x)=0 on A. Therefore $f \in J^0$ and we have $J^0 \neq (O)$.

3) $L^0 = C^+(S)$ is clear.

4) $J^{0}=C^{+}(S)$ implies J=L.

Since J^0 contains the unit function f(x)=1, J contains the empty set. Hence J=L.

Proposition 2. J° is an ideal of $C^{+}(S)$. If S is completely regular, J° is a proper ideal of $C^{+}(S)$, if and only if J is a filter of L.

Proposition 3. For ideals I_{λ} , $(\bigcap_{\lambda} I_{\lambda})^* \subset \bigcap_{\lambda} I_{\lambda}^*$. For filter J_{λ} , $(\bigcap_{\lambda} J_{\lambda})^0 \subset \bigcap_{\lambda} J_{\lambda}^0$. If, for two ideals I_1 and I_2 , $I_1 \subset I_2$, then $I_1^* \subset I_2^*$. If, for two filters J_1 and J_2 , $J_1 \subset J_2$, then $J_1^0 \subset J_2^0$.

Proof. Let $A \in (\bigcap I_{\lambda})^*$, and let F be a closed set such that $A \cap F = 0$, then there is a function f of $\bigcap I_{\lambda}$ such that $\inf f$ on F is positive. For every λ , $f \in I_{\lambda}$, and hence $F \in I_{\lambda}^*$. Therefore $A \in \bigcap_{\lambda} I_{\lambda}^*$. Similarly we have $(\bigcap_{\lambda} J_{\lambda})^{0} \subset \bigcap_{\lambda} J_{\lambda}^{0}$. If $I_{1} \subset I_{2}$, then $I_{1} = I_{1} \cap I_{2}$. Hence $I_{1}^{*} = (I_{1} \cap I_{2})^{*} \subset I_{1}^{*} \cap I_{2}^{*}$.

This implies $I_1^* \subset I_2^*$.

Proposition 4. $(I^*)^0 \supset I$ for every ideal I of $C^+(S)$.

Proof. Let $f \in I$ and let ε be a positive number. Then A = $\left\{ x \,|\, f(x) \!\leq\! \! rac{1}{2} arepsilon
ight\}$ is a closed set. For every closed set not meeting A, $f(x) \ge \frac{1}{2}$ on it, and hence $A \in I^*$. From $f(x) < \varepsilon$ on A, $f \in (I^*)^0$. Therefore $I \subset (I^*)^0$.

Proposition 5. $(J^0)^* \supset J$ for every filter J of L for a normal space S.

Proof. Let A be a closed set, and let F be a closed set such that $A \cap F = 0$. By the normality of S there is a function $f \in C^+(S)$, such that f(x)=0 on A and f(x)=1 on F. From f(x)=0 on A and $A \in J, f \in J^{0}$. Therefore, there is a function of J such that it admits a positive lower bound on F. This implies $A \in (J^0)^*$. Hence $J \subset (J^0)^*$.

An ideal I of $C^+(S)$ is called *closed* if $(I^*)^0 = I$.

A filter J of L is called *closed* if $(J^0)^* = J$. By Propositions 1 and 2, (0), $C^+(S)$ are closed ideals (S). L is a closed filter for a completely regular space. Let M be a maximal ideal of $C^+(S)$ for a completely regular space, then $(M^*)^0 \supset M$. Hence $(M^*)^0 = M$ or $C^+(S)$. If $(M^*)^0$ $=C^{+}(S)$, then $M^{*}=L$ and $M=C^{+}(S)$. Hence M is not maximal. Therefore $(M^*)=M$ and M is a closed ideal. If S is normal, any maximal filter of L is closed.

Proposition 6. For a completely regular space S, (O), $C^+(S)$ are closed ideals, and (S), L are closed filters. Any maximal ideal of $C^+(S)$ is closed. For a normal space, every ultrafilter of L is closed.

Let I_{λ} be closed ideals of $C^+(S)$ for every λ . Then

$$\{(\bigcap_{\lambda}I_{\lambda})^{*}\}^{\circ}\subset (\bigcap_{\lambda}I_{\lambda}^{*})^{\circ}\subset \cap_{\lambda}(I_{\lambda}^{*})^{\circ}=\bigcap_{\lambda}I_{\lambda}.$$

Hence $\bigcap_{\lambda} I_{\lambda}$ is a closed ideal. Let J be a filter of L for normal space, then $\bigcap I_{\lambda}$ is closed.

Let I be a closed ideal of $C^+(S)$, then $I = (I^*)^0$ and hence $I^* =$ $\{(I^*)^0\}^*$, therefore I^* is a closed filter of L. Let J be a closed filter of L, then J^0 is a closed ideal in $C^+(S)$. Hence, if I and J are closed ideal and closed filter respectively, and $I^*=J$, then $I=J^{\circ}$. If $J^0 = I$, then $I^* = J$. This implies that there is one-to-one correspondence between the set of closed ideals and closed filters.

No. 6]

If I is a maximal ideal for a completely regular space, then Iis a closed ideal. We shall show that I^* is an ultrafilter. To prove it, suppose that I^* is not ultrafilter, then there is proper ideal J such that $I^* \subset J \subset L$ and $I^* \neq J$. We have $I = (I^*)^0 \subset J^0 \subset C^+(S)$. Since the correspondence $J \rightarrow J^0$ is one-to-one, I is contained in J^0 properly, hence I is not maximal. Therefore, I^* is an ultrafilter. By the same method, if J is an ultrafilter for a normal space, J^{0} is a maximal ideal.

Proposition 7. There is one-to-one correspondence between the set of closed ideals and the set of closed filters. For a completely regular space, by the correspondence, every maximal ideal goes to an ultrafilter. For a normal space, every ultrafilter corresponds to a maximal ideal.

Suppose that S is a completely regular space.

Let I(a) be the set $\{f \mid f(a)=0, f \in C^+(S)\}$, and let F be a closed set such that $F \Rightarrow a$, then there is a function $f \in C^+(S)$ such that f(a)=0 and f(x)=1 on F. Such a function f is obtained in I(a). By the definition of $(I(a))^*$, every closed set F containing a is in $(I(a))^*$. On the other hand, let A be a closed set not meeting a, it is clear that $A \notin (I(a))^*$. Therefore, the ideal I(a) corresponds to the filter of closed set containing a. By Proposition 7, the set of all closed sets containing a given point a for a normal space S is ultrafilter and hence the ideal I(a) is maximal in $C^+(S)$.

Proposition 8. By the correspondence of Proposition 7, for a completely regular space, every ideal I(a) corresponds to the filter of closed sets containing a.

Proposition 9. Any ideal I(a) for a normal space is maximal. Let α be the operation *, then

- (1) $I^{\alpha} \supset I$.
- (2) $I^{\alpha\alpha}-I^{\alpha}$.
- (3) $I_1 \supset I_2$ implies $I_1^a \supset I_2^a$.
- $(4) \quad O^{\alpha} = 0.$

Therefore $I \rightarrow I^{\alpha}$ is a closure operation in $C^+(S)$. If $I_1 \frown I_2 = 0$, then $I_1^a \cap I_2^a = 0$. Suppose that $I_1^a \cap I_2^a \ni f$ and $f \equiv 0$, then we can find $A \in I_1^*$, $B \in I_2^*$ such that $A \neq S \neq B$ and $A \cup B \neq S$. Hence $A \cup B \in I_1^*$ $\frown I_a^*$. Therefore, for a non-empty closed set F such that $(A \cup B) \frown$ F=0, there are $g_1 \in I_1$, $g_2 \in I_2$ and $g_1(x) \ge \varepsilon_1$, $g_2(x) \ge \varepsilon_2$ on F. This shows that g_1g_2 is non-zero function and $g_1g_2 \in I_1 \cap I_2$, which is a contradiction. Therefore

(5) $I_1 \cap I_2 = 0$ implies $I_1^{\alpha} \cap I_2^{\alpha} = 0$.

References

- [1] N. Bourbaki: Topologie Générale, Chaps. I-X, Hermann, Paris.
- G. Higman: The compacting of topological space, Quarterly Jour. Math., 17, [2]27-32 (1948).
- [3] K. Iséki and Y. Miyanaga: Notes on topological spaces. III. On space of maximal ideals of semiring, Proc. Japan Acad., 32, 325-328 (1956).
 [4] W. Slowikowski and W. Zawadowski: A generalisation of maximal ideals method of Stone-Gelfand, Fund. Math., 42, 216-231 (1955).