89. On Closed Mappings. II

By Sitiro HANAI

Osaka University of Liberal Arts and Education (Comm. by K. KUNUGI, M.J.A., June 12, 1956)

The present note is a continuation of our previous paper on the closed mappings.¹⁾ Let S and E be T_1 -spaces. A mapping from S onto E is said to be closed if the image of every closed subset of S is closed in E. Recently it has been shown that several topological properties are invariant under a closed continuous mapping under some restrictions.²⁾

In this note, we will prove the invariance of other topological properties under a closed continuous mapping and under the inverse mapping of it, under some restrictions.

1. Let us recall some definitions in the following. The space S is called paracompact (point-wise paracompact) if every open covering of S has an open locally finite (point-finite) refinement and countably paracompact if every countable open covering has an open locally finite refinement. The space S is said to have the star-finite property if every open covering of S has an open star-finite refinement. By an S-space, we mean a normal space with the star-finite property according to E. G. Begle.³⁾

Theorem 1. Let f be a closed continuous mapping from a normal space S onto a normal space E. If the inverse image $f^{-1}(p)$ is compact for every point p of E, then the countable paracompactness is invariant under f.

Proof. Since f is a closed continuous mapping, the image space E is normal by a theorem of G. T. Whyburn.⁴⁾ Let $\{F_i\}$ be a decreasing sequence of closed sets in E with vacuous intersection. Then $\{f^{-1}(F_i)\}$ is a decreasing sequence of closed sets in S with vacuous intersection since f is continuous. Since S is countably paracompact and normal, there exists a sequence $\{G_i\}$ of open sets such that $\bigcap_{i=1}^{\infty} G_i = \phi$ and $f^{-1}(F_i) \subset G_i$ $(i=1, 2, \cdots)$.⁵⁾ Since f is closed and continu-

¹⁾ S. Hanai: On closed mappings, Proc. Japan Acad., 30, 285-288 (1954).

²⁾ G. T. Whyburn: Open and closed mappings, Duke Math. Jour., **17**, 69-74(1950). A. V. Martin: Decompositions and quasi-compact mappings, Duke Math. Jour., **21**, 463-469 (1954). V. K. Balachandran: A mapping theorem for metric spaces, Duke Math. Jour., **22**, 461-464 (1955). K. Morita and S. Hanai: Closed mappings and metric spaces, Proc. Japan Acad., **32**, 10-14 (1956).

³⁾ E. G. Begle: A, note on S-spaces, Bull. Amer. Math. Soc., 55, 577-579 (1949).

⁴⁾ G. T. Whyburn: Loc. cit.

⁵⁾ C. H. Dowker: On countably paracompact spaces, Canadian Jour. Math., 3, 219-224 (1951).

No. 6]

ous, each $(G_i)_0$ is an open inverse set and $f^{-1}(F_i) \subset (G_i)_0 \subset G_i$ and $\bigcap_{i=1}^{\infty} (G_i)_0 = \phi$ where $(G_i)_0$ denotes the union of all $f^{-1}(p)$ such that $f^{-1}(p)$ $\subset G_i$. Then it is obvious that $F_i \subset f\{(G_i)_0\}$ $(i=1, 2, \cdots), \bigcap_{i=1}^{\infty} f\{(G_i)_0\} = \phi$ and each $f\{(G_i)_0\}$ is open since f is a closed continuous mapping. Hence, by C. H. Dowker's theorem,⁶⁾ E is countably paracompact. This completes the proof.

Theorem 2. Let f be a closed continuous mapping from a normal space S onto a normal space E such that the inverse image $f^{-1}(p)$ is compact for every point p of E. If S is a locally compact S-space, then so is E.

Proof. Since S is an S-space, S is paracompact and normal. Hence E is paracompact and normal since f is a closed continuous mapping such that $f^{-1}(p)$ is compact for every point p of $E^{,7)}$ Let $\mathfrak{M} = \{M_{\mathfrak{a}}\}$ be an open covering of E, then \mathfrak{M} has an open locally finite refinement $\mathfrak{N} = \{N_{\mathfrak{p}}\}$. Then $\mathfrak{N}' = \{f^{-1}(N_{\mathfrak{p}})\}$ is an open covering of S since f is continuous. Since S is an S-space, \mathfrak{N}' has an open starfinite refinement $\mathfrak{N}' = \{R'_{\mathfrak{r}}\}$. Since S is locally compact and f is a closed continuous mapping such that $f^{-1}(p)$ is compact for every point p of E, E is locally compact.⁸⁾

For each point p of E, we can find an open neighborhood O(p)of p such that $\overline{O(p)}$ is compact and intersects only a finite number of sets of \mathfrak{N} . Then $\mathfrak{N} = \{O(p) \mid p \in E\}$ is an open covering of E. Since E is paracompact, \mathfrak{N} has an open locally finite refinement $\mathfrak{G} = \{G_s\}$. Then each set \overline{G}_s is compact and intersects only a finite number of sets of \mathfrak{N} . Since each $f^{-1}(p)$ is compact, there exists a finite number of sets of \mathfrak{N}' which covers $f^{-1}(p)$, say $\{R_i^{(p)'}\}$ $(i=1, 2, \cdots, n(p))$.

Let $G_{\delta(p)}$ be a set of \mathfrak{G} containing p and let $\{N_j^{(p)}\}$, $(j=1, 2, \cdots, k(p))$, k(p)), be the set of all sets of \mathfrak{N} intersecting $G_{\delta(p)}$. Then the family of open sets $\{(\sum_{i=1}^{n(p)} R_i^{(p)'})_0 \cap f^{-1}(G_{\delta(p)}) \cap f^{-1}(N_j^{(p)}), j=1, 2, \cdots, k(p) | p \in E\}$ is evidently an open covering of S. Let $\mathfrak{N} = \{f\{(\sum_{i=1}^{n(p)} R_i^{(p)'})_0\} \cap G_{\delta(p)} \cap N_j^{(p)}, j=1, 2, \cdots, k(p) | p \in E\}$, then \mathfrak{N} is an open refinement of \mathfrak{M} since \mathfrak{N} is an open refinement of \mathfrak{N} . Let $R_j^{(p)} = f\{(\sum_{i=1}^{n(p)} R_i^{(p)'})_0\} \cap G_{\delta(p)} \cap N_j^{(p)}$, then $\mathfrak{N} = \{R_j^{(p)}, j=1, 2, \cdots, k(p) | p \in E\}$.

We will next prove that \Re has the star-finite property.

Suppose on the contrary that there exists a set $R_j^{(p)}$ which intersects infinitely many sets of \Re , say $\{R_{j(l)}^{(p_l)}\}$, $(l=1, 2, \cdots)$. Then

⁶⁾ C. H. Dowker: Loc. cit.

⁷⁾ K. Morita and S. Hanai: Loc. cit.

⁸⁾ S. Hanai: Loc. cit.

 $\begin{aligned} R_{j}^{(p)} \cap R_{j(l)}^{(r_l)} &= \phi \ (l = 1, 2, \cdots). \quad \text{Hence} \\ (*) \qquad f \{ (\sum_{i=1}^{n(p)} R_i^{(p)'})_0 \} \cap G_{\delta(p)} \cap N_j^{(p)} \cap f \{ (\sum_{i=1}^{n(p_l)} R_i^{(p_l)'})_0 \} \cap G_{\delta(p_l)} \cap N_{j(l)}^{(p_l)} &= \phi, \\ (l = 1, 2, \cdots). \end{aligned}$

Since \mathfrak{G} is an open locally finite covering and $\overline{G}_{\mathfrak{s}(p)}$ is compact and intersects only a finite number of \mathfrak{N} , the sequence $\{N_{j(l)}^{(v_l)}\}$ $(l = 1, 2, \cdots)$ contains only a finite number of sets and $\overline{G}_{\mathfrak{s}(p)}$ intersects only a finite number of sets of \mathfrak{G} . Hence, from (*), we can find a set $R_i^{(p)'}$ which intersects infinitely many $R_i^{(p_l)'}$. This contradicts that \mathfrak{N}' is an open star-finite covering. This completes the proof.

Remark. In the above two theorems, the condition that the inverse image $f^{-1}(p)$ is compact for every point p of E can be replaced by that the boundary of $f^{-1}(p)$ is compact for every point p of $E^{,9)}$

2. In this section, we will deal with the case of the inverse mapping of a closed continuous mapping.

Theorem 3. Let f be a closed continuous mapping from a normal space S onto a normal space E. If the inverse image $f^{-1}(p)$ is compact for every point p of E, then the countable paracompactness is invariant under the inverse mapping of f.

Proof. As the proof of Theorem 1, we will prove this theorem by use of C. H. Dowker's theorem. Let $\{F_i\}$ $(i=1, 2, \cdots)$ be a decreasing sequence of closed sets in S such that $\bigcap_{i=1}^{\infty} F_i = \phi$. Then it is easy to see that $\lim_{i \to \infty} F_i = \bigcap_{i=1}^{\infty} F_i = \phi$. Then we have $\lim_{i \to \infty} f(F_i) = \phi$.

In fact, let q be any point of E and let x be any point of $f^{-1}(q)$, then we can find an open neighborhood O(x) of x which intersects only a finite number of F_i since $\lim_{i \to \infty} F_i = \phi$. If we take such O(x)for each point x of $f^{-1}(q)$, we have the collection $\{O(x)\}$ which covers $f^{-1}(q)$. Since $f^{-1}(q)$ is compact, we can find a finite subcovering $\{O(x_i)\}$ $(i=1, 2, \dots, n)$ of $\{O(x)\}$. Then $(\sum_{i=1}^n O(x_i))_0$ is an open inverse set since f is a closed continuous mapping. Then $f\{(\sum_{i=1}^n O(x_i))_0\}$ is an open neighborhood of q and intersects only a finite number of $\{f(F_i)\}$. Hence $q \in \limsup_{i=\infty} (F_i)$. Therefore we have $\lim_{i=\infty} f(F_i) = \phi$. Then we get $\bigcap_{i=1}^{\infty} f(F_i) = \phi$ from that $\lim_{i=\infty} f(F_i) = \phi$. Since E is countably paracompact and normal, there exists a

Since E is countably paracompact and normal, there exists a sequence $\{H_i\}$ of open sets in E such that $f(F_i) \subset H_i$ $(i=1, 2, \cdots)$ and $\bigcap_{i=1}^{\infty} H_i = \phi$. Hence $\bigcap_{i=1}^{\infty} f^{-1}(H_i) = \phi$ and $F_i \subset f^{-1}(H_i)$ where each $f^{-1}(H_i)$ is open since f is continuous. Therefore S is countably paracompact. This completes the proof.

⁹⁾ K. Morita and S. Hanai: Loc. cit.

Theorem 4. Let f be a closed continuous mapping from a normal space S onto a normal space E. If the inverse image $f^{-1}(p)$ is compact for every point p of E, then the paracompactness (point-wise paracompactness) is invariant under the inverse mapping of f.

Proof. As the proof of the invariance of the point-wise paracompactness can be carried out in the similar way as that of the paracompactness, we will only prove the case for the paracompactness in the following.

Let $\mathfrak{M} = \{M_{\mathfrak{a}}\}$ be an open covering of S. Since $f^{-1}(p)$ is compact for every point p of E, there exists a finite subcollection $\{M_i^{(p)}\}$ $(i=1, 2, \cdots, n(p))$ of \mathfrak{M} such that $f^{-1}(p) \subset \sum_{i=1}^{n(p)} M_i^{(p)}$. We take such a finite subcollection $\{M_i^{(p)}\}$ of \mathfrak{M} corresponding to each point p, and let \mathfrak{M}' be the collection of all $M_i^{(p)}$ of such $\{M_i^{(p)}\}$ (p ranging over all points of E). Then \mathfrak{M}' is an open refinement of \mathfrak{M} . Let M(p) $=(\sum_{i=1}^{n(p)}M_i^{(p)})_0$, then M(p) is an open inverse set since f is a closed continuous mapping. Let $H(p) = f\{M(p)\}$, then H(p) is an open set containing p. Then $\Re = \{H(p) \mid p \in E\}$ is an open covering of E. Since E is paracompact, \Re has an open locally finite refinement \Re' . Then for each $R' \in \Re'$, we can find a point p such that $R' \subset H(p)$. Hence $f^{-1}(R') \subset M(p) \subset (\sum_{i=1}^{n(p)} M_i^{(p)})_0$. Then we have a collection $\mathfrak{N} =$ $\{f^{-1}(R') \cap M_i^{(p)}, i=1, 2, \cdots, n(p) \mid R' \in \Re'\}$ of open sets in S. It is evident that \mathfrak{N} is an open refinement of \mathfrak{M}' . We will next prove that \mathfrak{N} is locally finite.

Let x be any point of S and let q=f(x), then there exists an open neighborhood O(q) of q which intersects only a finite number of sets of \mathfrak{R}' , say $\{\mathfrak{R}'_i\}$ $(i=1, 2, \dots, l)$, because \mathfrak{R}' is locally finite. Then $f^{-1}\{O(q)\} \cap f^{-1}(R'_i) \neq \phi$ $(i=1, 2, \dots, l)$. By the definition of \mathfrak{R} , we can easily see that $f^{-1}\{O(q)\}$ intersects only a finite number of sets of \mathfrak{R} . Hence \mathfrak{R} is locally finite. Therefore \mathfrak{R} is an open locally finite refinement of \mathfrak{M} . This completes the proof.

Theorem 5. Let f be a closed continuous mapping from a T_1 -space S onto a T_1 -space E. If the inverse image $f^{-1}(p)$ is compact for every point p of E, then the star-finite property is invariant under the inverse mapping of f.

As we can prove this theorem in the similar way as Theorem 4, we omit the proof.

Since a T_2 -space with the star-finite property is normal, we get easily the following corollary by virtue of Theorem 5.

Corollary. Let f be a closed continuous mapping from a T_2 -space S onto a T_2 -space E such that the inverse image $f^{-1}(p)$ is compact for every point p of E. If E is an S-space, then so is S.