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132. Note on Dimension Theory

By Jun-iti NAGATA
Department of Mathematics, Osaka City University
(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1956)

Recently we have studied some necessary and sufficient conditions
for n-dimensionality of general metric spaces.” The purpose of this
note is to develop the previous results. That is, we shall give a
generalization of our previous theorem concerning the relation between
(Lebesgue’s) dimension and covering and shall give some relations
between metric function, length of covering and dimension. Moreover,
we shall investigate embedding of #%-dimensional metric spaces into

products of 1-dimensional spaces on the foundation of our previous
results.

All the topological spaces considered here are general metric
spaces or metrizable spaces, and all the coverings are open unless
otherwise mentioned.

Definition. A real valued function p of two points of a topologi-
cal space R is a non-Archimedean parametric if

i) pl@,y)=0,

i) plx, ¥)=p(y, ©),
iii) {y| p(z,y)<e} is open for every >0,
iv)  px, y) =< max[p(z, 2), p(¥, 2)].

Theortem 1. In order that dim R<n for a metrizable space R it
18 necessary and sufficient that one can assign a metric p(x,y) agreeing
with the topology of R such that p(x,y)=inf{py(x, 2;)+ po(Rs,2s)+ -+
+po(2p W] 2:€ R}, po(@, y)=min{p,(x, y)|t=1,---,m+1} for some n+1
non-Archimedean parametrics p,(z,y) (¢=1,---,n+1).2

Proof. Necessity. Let dim R<#, then there exist #+1 0-dimen-
sional subspaces R, such that R:th,. from the general decomposition

i=1
theorem due to M. Katétov and to K. Morita.®> We assign a metric
p'(x,y) of R such that p'(x,y)<1. Since R, (¢+=1,---,n+1) are O0-
dimensional, we get disjoint coverings® U} (¢=1,-..,n+1, m=1,2.-.)

1) A theorem of dimension theory, Proc. Japan Acad., 32, No. 3 (1956). On a
relation between dimension and metrization, Proc. Japan Acad., 32, No. 4 (1956).

2) This theorem contains, as a special case for n=0, Groot’s theorem. See J. de
Groot and H. de Vries: A note on non-Archimedean metrizations, Proceedings Koninkl.
Nederl. Akademie van Wetenschappen, Ser. A, 58, No. 2 (1955).

8) M. Katétov: On the dimension of non-separable spaces I, Czechoslovak Math.
Jour., 2 (77) (1952). K. Morita: Normal families and dimension theory for metric
spaces, Math. Annalen, 128 (1954).

4) We call a collection U of open sets disjoint open collection if every intersection

of two disjoint elements of U is vacuous. If 11 is a covering, it is called a disjoint
covering. See ¢ A theorem of dimension theory.’”
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of R, such that I}, <}, U}, <&, in R, for S,={S,,m()|xe R}, where
S, (@)= {y|p'(®, y)<1/2™}. We define open disjoint collections B¢ (1=1,
-wn+1,m=0,1--.) of R as follows. Bj={R}. Let U}, = {UacAl},
then for every point xe¢R, we can find acA such that xe¢U, and
&(x)>0 such that S, ,(x)~R, S U,, S:.,(x)=S, for some S,c&,,; with
S,2U,. We put V,="{S.,, @)rec U, ~R;} (&8S,). If B} is defined,
then we define %Bi,, by B, =9 ,{V,|acA}.” Then B (¢=1,---,
n+1,m=0,1---) are obviously open disjoint collections such that
B, < B, <S,. Now we define a real valued function p, of two points
by pix, y)=inf{1/2" Y yeS(z, B:)}.® Then it is easily seen that p,
is a non-Archimedean parametric. It is also obvious that p(z,y)
=inf {py(@, 2;) + - - - + P2 W)|2: € R} (po(@, y)=min {p,(@,y)| i=1,---,n+1})
is a metric of R.
Sufficiency. Let p(x, y) is a metric of R satisfying the condition,

then we see easily that R= UR for R,= {z| pl(x, x) =0}. To see this,
we assume the existence of weR such that x¢ VR Then it must

be p;,(@, x)=¢,>0 (¢=1,--.,n+1), and hence from the property of p,,
it holds p,z, y)=max[p,(x, ¥), p(x, ¥)] = p;(x, x)=¢, for every ycR.
Therefore py(x, y) = mine,; >0, and hence p(x,2)= mine,>0 for every
ze R, which is a contradiction.

Putting S%. (@)= {y|p.x, ¥)<1/m}, we see easily from iv) that
Sl}m(x)rxslq/;m(y):\:‘l’ implies S/, (x)=S,/.(y). Hence 1, = {Sim@) ~F: |
zeR;} (m=1,2.--) are open disjoint covering of R,, Moreover, since
yeS(x, Ui) implies p(x, y) < p, y)<l/m, {1 |m=1,2.---} is an open
basis of R,. Thus we conclude dim R,=0.” This combining with
R:TJiRi implies dim R <% from the general decomposition theorem.

Next we proceed to generalize our previous theorem:

In order that a T,-topological space R is a metrizable space with
dim R=<n it s necessary and suflficient that there exists o sequence
B, >VBF>B,>BF>--- of open coverings such that S(p, B,,) (m=1,2-.+)
18 a nbd basis for each point p of R and such that each set of L, .,
intersects at most n+1 sets of B,.%

Theorem 2. In order that a T, -topological space R is a metrizable
space with dim R<n 1t s necessary and sufficient that there exists o
sequence B, >Vx >V, >V¥ > ... of open coverings such that S(p,B,)
(m=1,2--+) is a nbd bastis for each point p of R and such that order
B,<n+1 (m=1,2---).

5) PAL={P-Q|PecPp, Q@e} for open collectlons SB, D, ?B<£), for open colrlectrlgr;;
%, & means that P<@ for every Pe®P and for some QeD.
6) We use Tukey’s notations. See convergence and uniformity in topology (1940).

T) See Morita: Loc. cit.
8) A theorem of dimension theory, Theorem 2.
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Proof. Since the necessity is contained in the above theorem,
we prove only the sufficiency. Let B,={V,|acA}, then we define
U, by U=~ {V|S(V,B,)= V., VeB,}. U;={U,|acA} is an open cover-
ing of R such that U,>3,, and each set of B, intersects at most
n+1 sets of Il;. Next, we define U; by U,=~{V|S(V, B)=V,, VeB,}
for By={V,|BeB}. Then for U;={U,|BeB} it holds B,<U;<¥
<PBF<B,<U,. Since each set of B, intersects at most n+1 sets of
U,;, we can repeat this process and get a sequence U,>3,>U¥>1,
>B,>1F>U,>B,>--- of open coverings such that each set of L,,
intersects at most »-+1 sets of U,,_,. Hence U,>UF>1U,>U*>
is a sequence satisfying the condition of the above theorem, proving
dim R <n.

Theorem 3. Let n=n,+n,+--++mn, for non-negatz’ve integers n,
(t=1,---, k). Ifthere exist sequences B;;>B}% >V, >V >... (1=1,

k) of open coverings of a Tl-space R such that order %mlgn +1 and

such that S(p, 8,) for B —~/\Bm (m=1,2--+) 48 a nbd basis of p,
then R s a metrizable space wzth dim R<n and can be embedded in a
product of k metrizable spaces R, (i=1,---, k) with dim R,<n,. (This
theorem contains as a special case the suﬁiciency part of Theorem 2.)

Proof. As in the proof of Theorem 2, we can select sequences
W, >UE* >y, >Uk*>- .. (¢=1,---,k) of open coverings such that
S(p, U,,.,;) intersects at most n,+1 sets of 1, and such that S(p, UL,)
(m=1,2.-+) is a nbd basis of p for 11,,= /\1[,,” Let U,,={U,|ac A} for

i=1

fixed m, 7, then we put V,=S(U,, U,,.. 1), Wy, gn-1=R, Wy,gn=8(V¢ W, )
W1/2m+1/2m+‘:S(W1/2”" um+3i)7 Wl/sm“:S(Vuc, um+3i); Wy am g gmtt, g gmee
=S (W gm 1 gm+1, ]'Im+47,)7 Wi,gm g gmez=S(W,,qgm, um+4i)’ VV1/2"“*2+1/2"“‘2
=S(Wy,gme1, W, 40), Wy gmee=S(VE, U, ,4),-++ . Defining f,,(x)=inf {r|
xe W,}, we get continuous functions f,(acA) satisfying f,,..(V)=0,
funi(U)=1/2"1" Clearly, for every >0 there exists [,=I,(¢) such
that yeS(r, U,,) implies | f...(@)—funi(¥) |<e (a€4,, m=1,2-..). We
consider a topological product P,=P{I,|acA,;,m=1,2---} of P,={x|
0<x=<1/2""'} (acA,;). Then we define a mapping F; of R into P,
by F(@)={fumi(®)|ac Ay, m=1,2---} (zeR).

Now we proceed to prove that F,(R) (= P,) is a metrizable space
with dim F(R)<n,;. Since N,=F(R)~ {{p.} lpa>0 (aeA,,;) are open
and since f,,(U,)=1/2",~{U,|acA,;}=R, N,,={N, ]aeAm is an

open covering of F,(R). Let us show order ‘Rm,Sn +1. If ﬂNa]$¢

and a;€A4,, (j=1,--+, k), then we can choose p={p,} ¢ F,(R) and reR

such that peﬁN"f’ Fix)=p. Since f,,(¥)=p,,;>0 (j=1,---,h), i

holds ze V., a,e4,,; (j=1,---, h). On the other hand, since each S(p,
9) f(V)=a means f(x)=a (xeV).
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U,.,.) intersects at most »,+1 sets of U,,,, we have order {V,=S(U,,
U,.)|acd,;} =<n,+1. Therefore we have h<m,+1. This means order
N,..<n;+1. Moreover N, ,,<N,.;, and S(p, N,,) (m=1,2--.) is a
nbd basis of each point p of F,(R); its proof is left to the reader.
From Theorem 2 we can conclude the metrizability of F,(R) and
dimF,(R)<mn,+1.

Now we define a mapping F(x) of R into F,(R) X Fy(R) X -+ - x F(R)
by F(z)=(F(x),--+, F(@)eFy(R)X -+« x F(R) (xeR). Then F(x) is,
as easily seen, a homeomorphic mapping and consequently R is homeo-
morphic with the subspace F'(R) of the product space F(R)x---:
x F(R) with dim Fy(R)<mn, (¢=1,--+,k). From the general product
theorem due to Katétov and Morita!” we have dim R<n,+ -+ +n,=mn.

Theorem 4. FEvery metric space R with dim R<n can be topologi-
cally imbedded in a topological product of m+1 at most 1-dimensional
metric spoces.

Proof. If dim R<n, then it is easily shown that we can assign
a covering ¥ and open collections U, ¢=1,---,n+1) for every covering

Il of R such that V< \/11 <U and such that each S%*(p, ) 1ntersects
at most one of sets belongmg to U, for a fixed 7. Because R= UR
i=1
for some R, with dim R,=0, and hence there exists a disjoint cover-
ing B, of R such that B,<U in R,. For every point = of R, we
denote by (@) a positive number such that S.,,(x)~R, & V.9,
Seo(@)S U, e, for U, defined by V,. Then B[={“~ {S..,(&)|zec V,}|
n+1
V,e3B,} is an open collection of R with “~®B,<ll. Selecting a cover-
n+1 i=1
ing W with W*< v B], we can define an open collectlon ll by U,
=1
W S(W, BV} VieNi}. It is easy to see that \/11 covers
R and that each set of W intersects at most one of sets of U,
Choosing a covering 8 with B**<®W, we have open collections and a
covering satisfying the required condition.

We denote by &,>68}>8,>&}>... a sequence of covering such
that S(», S,,) (m=1,2--.) is a nbd basis for each point of R, and
take a covering B and collections U,; (¢=1,---,n+1) having the above

n+1
property for &,, t.e. B< \711”<@2 and S%p, B) intersects at most one
i=1

set of U;;. Let U,,={U,|acA} and define N,, by N,,={S(U,, V), R
‘-’U [aeA } for a fixed ¢, then N,, is a covering with order =2.

Moreover, /\ WEM<C is obvious from & <3, and from that U U,, covers
R.
Now we notice that every covering L3 with order <2 has a locally
finite star-refinement Q' with order <2. To show this, we put
10) Loe. cit.



572 J. NaGAaTA [Vol. 32,

P={P,;|8e D} and denote by P’ a star-refinement of L. Then M= { M,
=~ {P"|S(P',P)&P;, P'eP'}|8e D} is a locally finite refinement of P
with order <2. We define an open set L, for every 8¢D such that

M;— ~ MachacLscMs and put Q;=L;— L«w 2= {Qs Ma/\MBI8

8%:8’€D
a,Be%,Z#B}. It is easy to see that & 1s an open covering such
that 2<%, order 0<2. Repeating such a process we have a locally
finite A-refinement ' of O with order <2. Q' satisfies the required
conditions.

To show the existence of sequences M, >Nji>N,,>NE> .- (1=1,
n+1

-+, n+1) of coverings with order <2 such that AN,,;<S,,, we assume
i=1

the existence of such M,, for /<m. Then, there exists, from the
above notice, a locally finite covering N, with order <2 such that
NF<M,;. Next, we can select open collections B, ¢=1,---,n+ 1) and

a covering 0 such that ‘)R/\@,,Hg> \/SB >0 for M with Mr*< /\9?

and such that each S%p, Q) lntersects at most one of sets belongmg
to P, for a fixed .. We put P,={P,|BeB}, N,={N;|y<+} and denote
by ¥(B) the first ordinal ¢ such that S(P;, Q)& N, e, for BeB. Then
we define a covering %, .,;, by %, .,,={K,, S(Ps, Q) | y<r, BB}, where
we put K =N~ {P;|y=9(B)}~ (S(Ps Q)|yFv(B)}. It follows
easily that %, .., <N, and order ER,,HM<2 its proof is left to the reader.

n n+1
It holds, from the fact that \/‘Bi covers R, /t1%m+”<(v%)*<@,’;+2
=1 i=1 i=1

<&,..1- The formula %m+1i<_‘ﬁi combining with N}*<N,, implies
Nk, 1:<N,;. This completes the induction, and hence we get sequences

Ny =>NE>Ny, >NF>- -+ (¢=1,-++,n+1) such that n/+\192m.<€m, order
N,..=2. Hence we can imbed, from Theorem 3, R 1nto a topological

product of n+1 metrizable spaces R, with dim R,<1.

Definition. We call a covering U a multiplicative covering if every
non-empty intersection ﬂ U; of elements U, (4=1,---,k) of U is an
element of 1l -

Definition. Let »n be the maximal number such that there
exists a sequence U,=2U,=<---=2U, of elements of a multiplicative
covering U, then » is called the length of UV

Definition. We mean by the rank of an element U of a multi-
plicative covering U the maximal number r such that there exists a
sequence U=U,RU,=---2U., of elements of 1.

Theorem 5. In order that a T,-space R s a wmetrizable space
with dim <n it ts necessary and suﬁicwnt that there exists a sequence

11) The definitions and mvestlgatlons on 1ength of f finite covermé‘ are due to P.

Alexandroff and A. Kolmogoroff: Endliche Uberdeckung topologisher Riume, Fun.
Math., 26 (1936).
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W, S>>, >0 >« of multiplicative coverings with length <n+1
such that S(p,U,) (m=1,2--.) is a nbd basis of p.

Proof. Since the necessity is clear, we show only the sufficiency.

Let us assume the existence of a sequence satisfying the condi-
tion of the proposition. If we denote by U,,(acA,) all the elements
of U, with rank r, then W,={U,|acd,, r=1,---,n+1}. We define
Ve (4=1,---,n+1) by V¥P=U,, Vo= m]S(x,ll)CVS; Dy° (¢=2, 8,
<o, n+ 1) It follows easily that VI+Pc...c VP VP=U,, and U,
<{V@|acd,, r=1,---,n+1} (i=1,--+,n+1) and S(VP, U)SVI™ (¢

=2,~-,n+1) Next, we define M, (i=1,---,n+1) by M,a Vw =U,,,
M= Vi%f) S( Vw ’ n+2)] a'eA1 S( Vg;)7un+2)l a'GAn S( Vzmla;
WU,..)|acd,;} 1=2,---,n+1). Let us show 11,,+2<‘JR1— {M,,|acA,,

r=1,---,n+1}. Since U, . <{VP|ac4,, r=1,2,..-,n+1}, it is possi-
ble to find for every Uecll,,, the minimum number 7 such that VS
2U. If it holds U~S(V,U,,.)¢ for some & with 1<k=<r—1, and
for acA,, then we have, from Uk <1, USS(V®, U VL PSVE,
which is a contradiction. Hence it must be U~S(Vi2, W,..)=¢ A=k
=r—1,a’cA,). This combining with U= V¢’ implies US M,,, proving
U,,,<M,. It remains to prove order M,<n-+1. In the case a,BcA,,
a=R implies clearly M,, ~M;=U,, ~U;=2¢.

To show the same assertion for r>1, we prove that U,,~ U,
=U,, for a,BecA, vecA, generally implies VO V=V, First,
VS VeV is obvious. Conversely, there exist nbds P(z), Q(x)
of 2e VP, V¥ such that S(P(x), U,)=U,, SQ),U,)SU,. Hence
S(P(x) ~Qx), N)&U,, ~U,;=U,.,. This means xzecV, proving V&
=V VP, Repeating this process, we conclude V2=V V. We
return now to the proof of the assertion: M,, ~M,;=¢ (a5B). Using
the notice above, we have M,.~M,= Ve Ve - {(S(VP, U, )|ac A}

SV, Uye)lae Ao}~ - - =2 {S(V O U, ac A, SVD VP — SV,
1,,:)=¢, where UN,\UTB:U,,T and consequently 7'<; hence order
M, <n+1. Repeating the same process, we get a sequence M, (m=
1,2...) of coverings with order <n+1 such that U, ,, 1,m.1,> M,
>, nns» Therefore we have, from Theorem 2, dim R<n.

12) We denote by A° the ir interior of A



