35. On a Right Inverse Mapping of a Simplicial Mapping

By Yukihiro Kodama

(Comm. by K. KUNUGI, M.J.A., March 12, 1957)

1. Let X and Y be topological spaces and let f be a continuous mapping from X onto Y. By a right inverse mapping of f, we mean a continuous mapping g of Y into X such that fg(y)=y for each point y of Y. In the present note, we shall show that, in case X and Y are (finite or infinite) simplicial complexes and f is a simplicial mapping from X onto Y, the existence of a right inverse mapping of f is equivalent to some combinatorial properties of X and Y. The theorem will be stated in 3. In 2 we shall state notations and a lemma which we need later on.

2. We denote by J the additive group of integers. By a *lower* sequence of abelian groups, we mean sequences of abelian groups $\{G_i; i \in J\}$ and homomorphisms $\{g_i; i \in J\}$ such that

i) g_i is a homomorphism of G_{i+1} into G_i , $i \in J$;

ii) $g_i g_{i+1}$ is the zero-homomorphism, $i \in J$.

By a homomorphism of a lower sequence $\{G_i; g_i\}$ of abelian groups into a lower sequence $\{H_i; h_i\}$ of abelian groups, we mean a sequence $\{f_i; i \in J\}$ of homomorphisms such that

i) f_i is a homomorphism of G_i into H_i , $i \in J$;

ii) $h_i f_{i+1} = f_i g_i$, $i \in J$.

A homomorphism $\{f_i\}$ of a lower sequence $\{G_i; g_i\}$ into a lower sequence $\{H_i; h_i\}$ is called a *retraction-homomorphism* if and only if there exists a homomorphism $\{k_i\}$ of $\{H_i; h_i\}$ into $\{G_i; g_i\}$ such that, for each integer $i \in J$, $f_i k_i$ is the identity isomorphism of H_i into H_i .

Let X be a simplicial complex. We denote the *i*-section of X by X^i . Let A be a subcomplex of X. By the barycentric subdivision of X relative to A, we mean the barycentric subdivision of X such that all simplexes of A are not subdivided (cf. [1] or [3]).

Lemma. Let X and Y be simplicial complexes and let f be a simplicial mapping of X into Y. Let B be a subcomplex of Y. Let us denote the first barycentric subdivisions of X and Y relative to the subcomplexes $f^{-1}(B)$ and B by \tilde{X} and \tilde{Y} , respectively. Then there exists a simplicial mapping \tilde{f} of \tilde{X} into \tilde{Y} , which we call a simplicial mapping associated with f and B with the following property: Let s and s' be simplexes of $X-f^{-1}(B)$ and Y-B. Then we have f(s)=s' if and only if the barycenter of s is mapped into the barycenter of s' by \tilde{f} .

No. 3]

This lemma is obvious by the definition of a simplicial mapping. Let (X, A) be a pair of simplicial complexes. We denote by H_i (X, A) and $H_i(X)$ the *i*-dimensional homology groups of (X, A) and X with coefficients J. The sequence of groups and homomorphisms

 $\cdots \xleftarrow{^{i_{\ast}}} H_{q-1}(A) \xleftarrow{^{\vartheta}} H_q(X,A) \xleftarrow{^{j_{\ast}}} H_q(X) \xleftarrow{^{i_{\ast}}} H_q(A) \xleftarrow{^{\vartheta}} \cdots$

is a lower sequence, where i_* and j_* are the homomorphisms induced by the inclusion mappings $i: A \to X$ and $j: X \to (X, A)$, and ∂ is the boundary homomorphism (cf. for example, [2]). This sequence is called the homology sequence of (X, A). We denote it by $\mathcal{H}(X, A)$.

3. Theorem. Let X and Y be (finite or infinite) simplicial complexes. Let f be a simplicial mapping from X onto Y. The following three conditions are equivalent:

i) There exists a simplicial mapping of Y into X which is a right inverse mapping of f.

ii) Let \widetilde{X} be the first barycentric subdivision of X relative to the subcomplex $f^{-1}(Y^0)$ of X and let \widetilde{Y} be the first barycentric subdivision of Y. Moreover, let \widetilde{f} be a simplicial mapping of \widetilde{X} into \widetilde{Y} associated with f and Y^0 . Whenever (K, L) is a pair of subcomplexes of \widetilde{Y} , \widetilde{f} induces a retraction-homomorphism from $\mathcal{H}(\widetilde{f}^{-1}(K) \cap \widetilde{X}^s, \widetilde{f}^{-1}(L) \cap \widetilde{X}^t)$ onto $\mathcal{H}(K, L)$, where $s = \dim K$ and $t = \dim L$.

iii) Let \tilde{X} , \tilde{Y} and \tilde{f} be the same as in ii). Then \tilde{f} induces a retraction-homomorphism from $\mathcal{H}(\tilde{X}^1, \tilde{X}^0)$ onto $\mathcal{H}(\tilde{Y}^1, \tilde{Y}^0)$.

Proof. Since ii) \rightarrow iii) is obvious, it is sufficient to prove that i) \rightarrow ii) and iii) \rightarrow i).

i) \rightarrow ii). Let g be a right inverse simplicial mapping of f from Y to X. Let (K, L) be a pair of subcomplexes of \tilde{Y} such that $s = \dim K$ and $t = \dim L$. Put M = g(K) and N = g(L). Obviously, $\tilde{f} \mid M = f \mid M$ and the restricted mapping $\tilde{f} \mid M : M \rightarrow K$ is a homeomorphism. Denote by h the restricted mapping $g\tilde{f} \mid \tilde{f}^{-1}(K) \frown \tilde{X}^s : (\tilde{f}^{-1}(K) \frown \tilde{X}^s, \tilde{f}^{-1}(L) \frown \tilde{X}^i) \rightarrow (M, N)$. Then h is a simplicial retraction from $(\tilde{f}^{-1}(K) \frown \tilde{X}^s, \tilde{f}^{-1}(L) \frown \tilde{X}^i)$ onto (M, N).*) Therefore, h induces a retraction-homomorphism from $\mathcal{H}(\tilde{f}^{-1}(K) \frown \tilde{X}^s, \tilde{f}^{-1}(L) \frown \tilde{X}^i)$ onto $\mathcal{H}(M, N)$. This completes the proof.

iii) \rightarrow i). Put $M = \tilde{X}^1$, $N = \tilde{X}^0$, $K = \tilde{Y}^1$ and $L = \tilde{Y}^0$. By our assumptions, there exist homomorphism $k_0: H_0(L) \rightarrow H_0(N)$ and $k_1: H_1(K, L) \rightarrow H_1(M, N)$ such that

a) $f_i k_i$ =the identity isomorphism for i=0, 1;

^{*)} Let (A, B) and (C, D) be pairs of simplicial complexes such that $(C, D) \subset (A, B)$. By a simplicial retraction h from (A, B) onto (C, D), we mean a simplicial mapping from (A, B) onto (C, D) such that h(x) = x for each point x of C.

b) $\partial k_1 = k_0 \partial;$

where f_0 is the homomorphism of $H_0(N)$ into $H_0(L)$ induced by \widetilde{f} and f_1 is the homomorphism of $H_1(M, N)$ into $H_1(K, L)$ induced by \widetilde{f} . Since N and L are sets of vertexes, we have $H_0(N) = \sum_{v \in N} J_v$ and $H_0(L)$ $=\sum_{w\in I} J_w$, where \sum means the weak direct sum of abelian groups J_v and J_w each of which is isomorphic to J, respectively. Denote by 1_v and 1_w the unit elements of J_v and J_w for each vertex v and w of N and L. For each vertex w of L, we can find the vertex v of N such that $k_0(1_w)=1_v$. Let \tilde{g}_0 be a mapping of L into N defined by Then $\widetilde{f}\widetilde{g}_0(w) = w$ and \widetilde{g}_0 is a 1-1 correspondence. Let $\tilde{g}_0(w) = v.$ $s=(w_0, w_1)$ be a 1-simplex of K. By b), $\tilde{g}_0(w_0)$ and $\tilde{g}_0(w_1)$ form a 1simplex of *M*. Let $s = (w_0, w_1, \dots, w_n)$ be an *n*-simplex of \widetilde{Y} such that w_i is the barycenter of a j_i -simplex of Y for $i=0, 1, 2, \cdots, n$ and $j_i < j_{i+1}$ for $i=0, 1, \cdots, n-1$. Let $\widetilde{g}_0(w_i)$ be the barycenter of a j'_i simplex t_{j_i} of X. Then, by the lemma in 2, we have $j_i \leq j_i'$, i=0,1, \cdots , n, and $j'_i < j'_{i+1}$, $i=0, 1, \cdots, n-1$. Moreover $t_{j'_i}$ is a j'_i -face of $t_{j_{i+1}}$, $i=0, 1, \cdots, n-1$. Therefore the set $\{\widetilde{g}_0(w_i); i=0, 1, \cdots, n\}$ forms an *n*-face of $t_{j'_n}$. Thus we have a simplicial mapping \tilde{g} of \tilde{Y} into \widetilde{X} defined by $\widetilde{g} \mid L = \widetilde{g}_0$ such that $\widetilde{f}\widetilde{g}$ is the identity mapping of \widetilde{Y} into \widetilde{Y} . Let $s = (u_0, \dots, u_n)$ be an *n*-simplex of Y and let w be the barycenter of s. By a similar consideration as above, we can show that the set $\{\tilde{g}(u_i); i=0, 1, \dots, n\}$ forms an *n*-face s' of the simplex whose barycenter is $\tilde{g}(w)$. Since f is a simplicial mapping, we have f(s') = s. Obviously g is defined uniquely and is the required one.

References

- [1] P. Alexandroff and H. Hopf: Topologie I, Berlin (1935).
- [2] S. Eilenberg and N. E. Steenrod: Foundations of Algebraic Topology, Princeton (1952).
- [3] S. Lefschetz: Algebraic Topology, Princeton (1942).