35. On a Right Inverse Mapping of a Simplicial Mapping

By Yukihiro Kodama
(Comm. by K. Kunugi, m.J.A., March 12, 1957)

1. Let X and Y be topological spaces and let f be a continuous mapping from X onto Y. By a right inverse mapping of f, we mean a continuous mapping g of Y into X such that $f g(y)=y$ for each point y of Y. In the present note, we shall show that, in case X and Y are (finite or infinite) simplicial complexes and f is a simplicial mapping from X onto Y, the existence of a right inverse mapping of f is equivalent to some combinatorial properties of X and Y. The theorem will be stated in 3 . In 2 we shall state notations and a lemma which we need later on.
2. We denote by J the additive group of integers. By a lower sequence of abelian groups, we mean sequences of abelian groups $\left\{G_{i} ; i \in J\right\}$ and homomorphisms $\left\{g_{i} ; i \in J\right\}$ such that
i) g_{i} is a homomorphism of G_{i+1} into $G_{i}, i \in J$;
ii) $g_{i} g_{i+1}$ is the zero-homomorphism, $i \in J$.

By a homomorphism of a lower sequence $\left\{G_{i} ; g_{i}\right\}$ of abelian groups into a lower sequence $\left\{H_{i} ; h_{i}\right\}$ of abelian groups, we mean a sequence $\left\{f_{i} ; i \in J\right\}$ of homomorphisms such that
i) f_{i} is a homomorphism of G_{i} into $H_{i}, i \in J$;
ii) $h_{i} f_{i+1}=f_{i} g_{i}, i \in J$.

A homomorphism $\left\{f_{i}\right\}$ of a lower sequence $\left\{G_{i} ; g_{i}\right\}$ into a lower sequence $\left\{H_{i} ; h_{i}\right\}$ is called a retraction-homomorphism if and only if there exists a homomorphism $\left\{k_{i}\right\}$ of $\left\{H_{i} ; h_{i}\right\}$ into $\left\{G_{i} ; g_{i}\right\}$ such that, for each integer $i \in J, f_{i} k_{i}$ is the identity isomorphism of H_{i} into H_{i}.

Let X be a simplicial complex. We denote the i-section of X by X^{i}. Let A be a subcomplex of X. By the barycentric subdivision of X relative to A, we mean the barycentric subdivision of X such that all simplexes of A are not subdivided (cf. [1] or [3]).

Lemma. Let X and Y be simplicial complexes and let f be a simplicial mapping of X into Y. Let B be a subcomplex of Y. Let us denote the first barycentric subdivisions of X and Y relative to the subcomplexes $f^{-1}(B)$ and B by \tilde{X} and \tilde{Y}, respectively. Then there exists a simplicial mapping \tilde{f} of \tilde{X} into \tilde{Y}, which we call a simplicial mapping associated with f and B with the following property: Let s and s^{\prime} be simplexes of $X-f^{-1}(B)$ and $Y-B$. Then we have $f(s)=s^{\prime}$ if and only if the barycenter of s is mapped into the barycenter of s^{\prime} by \tilde{f}.

This lemma is obvious by the definition of a simplicial mapping.
Let (X, A) be a pair of simplicial complexes. We denote by H_{i} (X, A) and $H_{i}(X)$ the i-dimensional homology groups of (X, A) and X with coefficients J. The sequence of groups and homomorphisms
is a lower sequence, where i_{*} and j_{*} are the homomorphisms induced by the inclusion mappings $i: A \rightarrow X$ and $j: X \rightarrow(X, A)$, and ∂ is the boundary homomorphism (cf. for example, [2]). This sequence is called the homology sequence of (X, A). We denote it by $\mathcal{H}(X, A)$.
3. Theorem. Let X and Y be (fnite or infinite) simplicial complexes. Let f be a simplicial mapping from X onto Y. The following three conditions are equivalent:
i) There exists a simplicial mapping of Y into X which is a right inverse mapping of f.
ii) Let \tilde{X} be the first barycentric subdivision of X relative to the subcomplex $f^{-1}\left(Y^{0}\right)$ of X and let \tilde{Y} be the first barycentric subdivision of Y. Moreover, let \tilde{f} be a simplicial mapping of \tilde{X} into \tilde{Y} associated with f and Y^{0}. Whenever (K, L) is a pair of subcomplexes of \tilde{Y}, \tilde{f} induces a retraction-homomorphism from $\mathscr{H}\left(\widetilde{f}^{-1}(K) \subset \widetilde{X}^{s}, \tilde{f}^{-1}(L) \subset \widetilde{X}^{\prime}\right)$ onto $\mathscr{H}(K, L)$, where $s=\operatorname{dim} K$ and $t=\operatorname{dim} L$.
iii) Let \tilde{X}, \tilde{Y} and \tilde{f} be the same as in ii). Then \tilde{f} induces a retraction-homomorphism from $\mathscr{H}\left(\widetilde{X}^{1}, \widetilde{X}^{0}\right)$ onto $\mathscr{H}\left(\widetilde{Y}^{1}, \widetilde{Y}^{0}\right)$.

Proof. Since ii) \rightarrow iii) is obvious, it is sufficient to prove that i) \rightarrow ii) and iii) \rightarrow i).
i) \rightarrow ii). Let g be a right inverse simplicial mapping of f from Y to X. Let (K, L) be a pair of subcomplexes of \tilde{Y} such that $s=$ $\operatorname{dim} K$ and $t=\operatorname{dim} L$. Put $M=g(K)$ and $N=g(L)$. Obviously, $\tilde{f} \mid M$ $=f \mid M$ and the restricted mapping $\tilde{f} \mid M: M \rightarrow K$ is a homeomorphism. Denote by h the restricted mapping $g \widetilde{f} \mid \widetilde{f}^{-1}(K) \curvearrowright \widetilde{X}^{s}:\left(\tilde{f}^{-1}(K) \curvearrowright \widetilde{X}^{s}\right.$, $\left.\tilde{f}^{-1}(L) \frown \tilde{X}^{t}\right) \rightarrow(M, N)$. Then h is a simplicial retraction from $\left(\tilde{f}^{-1}(K)\right.$ $\left.\frown \widetilde{X}^{s}, \tilde{f}^{-1}(L) \frown \widetilde{X}^{t}\right)$ onto $(M, N) .^{*)} \quad$ Therefore, h induces a retractionhomomorphism from $\mathscr{H}\left(\tilde{f}^{-1}(K) \frown \tilde{X}^{s}, \tilde{f}^{-1}(L) \frown \tilde{X}^{i}\right)$ onto $\mathscr{H}(M, N)$. This completes the proof.
iii) \rightarrow i). Put $M=\tilde{X}^{1}, N=\widetilde{X}^{0}, K=\widetilde{Y}^{1}$ and $L=\widetilde{Y}^{0}$. By our assumptions, there exist homomorphism $k_{0}: H_{0}(L) \rightarrow H_{0}(N)$ and $k_{1}: H_{1}(K$, $L) \rightarrow H_{1}(M, N)$ such that
a) $f_{i} k_{i}=$ the identity isomorphism for $i=0,1$;

[^0]b) $\partial k_{1}=k_{0} \partial$;
where f_{0} is the homomorphism of $H_{0}(N)$ into $H_{0}(L)$ induced by \tilde{f} and f_{1} is the homomorphism of $H_{1}(M, N)$ into $H_{1}(K, L)$ induced by \tilde{f}. Since N and L are sets of vertexes, we have $H_{0}(N)=\sum_{v \in N} J_{v}$ and $H_{0}(L)$ $=\sum_{w \in L} J_{w}$, where \sum means the weak direct sum of abelian groups J_{v} and J_{w} each of which is isomorphic to J, respectively. Denote by 1_{v} and 1_{w} the unit elements of J_{v} and J_{w} for each vertex v and w of N and L. For each vertex w of L, we can find the vertex v of N such that $k_{0}\left(1_{w}\right)=1_{v}$. Let \tilde{g}_{0} be a mapping of L into N defined by $\tilde{g}_{0}(w)=v$. Then $\tilde{f} \tilde{g}_{0}(w)=w$ and \tilde{g}_{0} is a 1-1 correspondence. Let $s=\left(w_{0}, w_{1}\right)$ be a 1 -simplex of $K . \quad$ By b$), \tilde{g}_{0}\left(w_{0}\right)$ and $\tilde{g}_{0}\left(w_{1}\right)$ form a 1 simplex of M. Let $s=\left(w_{0}, w_{1}, \cdots, w_{n}\right)$ be an n-simplex of \tilde{Y} such that w_{i} is the barycenter of a j_{i}-simplex of Y for $i=0,1,2, \cdots, n$ and $j_{i}<j_{i+1}$ for $i=0,1, \cdots, n-1$. Let $\tilde{g}_{0}\left(w_{i}\right)$ be the barycenter of a j_{i}^{\prime} simplex $t_{j_{i}}$ of X. Then, by the lemma in 2 , we have $j_{i} \leq j_{i}^{\prime}, i=0,1$, \cdots, n, and $j_{i}^{\prime}<j_{i+1}^{\prime}, i=0,1, \cdots, n-1$. Moreover $t_{j_{i}^{\prime}}$ is a j_{i}^{\prime}-face of $t_{j_{i+1}}, i=0,1, \cdots, n-1$. Therefore the set $\left\{\tilde{g}_{0}\left(w_{i}\right) ; i=0,1, \cdots, n\right\}$ forms an n-face of $t_{j_{n}^{\prime}}$. Thus we have a simplicial mapping \tilde{g} of \tilde{Y} into \widetilde{X} defined by $\tilde{g} \mid L=\tilde{g}_{0}$ such that $\tilde{f} \tilde{g}$ is the identity mapping of \tilde{Y} into \tilde{Y}. Let $s=\left(u_{0}, \cdots, u_{n}\right)$ be an n-simplex of Y and let w be the barycenter of s. By a similar consideration as above, we can show that the set $\left\{\tilde{g}\left(u_{i}\right) ; i=0,1, \cdots, n\right\}$ forms an n-face s^{\prime} of the simplex whose barycenter is $\tilde{g}(w)$. Since f is a simplicial mapping, we have $f\left(s^{\prime}\right)=s$. Obviously g is defined uniquely and is the required one.

References

[1] P. Alexandroff and H. Hopf: Topologie I, Berlin (1935).
[2] S. Eilenberg and N. E. Steenrod: Foundations of Algebraic Topology, Princeton (1952).
[3] S. Lefschetz: Algebraic Topology, Princeton (1942).

[^0]: *) Let (A, B) and (C, D) be pairs of simplicial complexes such that $(C, D) \subset(A, B)$. By a simplicial retraction h from (A, B) onto (C, D), we mean a simplicial mapping from (A, B) onto (C, D) such that $h(x)=x$ for each point x of C.

