33. A Remark on Countably Compact Normal Space

By Kiyoshi Iséki

(Comm. by K. KUNUGI, M.J.A., March 12, 1957)

In [4], S. Kasahara, one of my colleagues, and I myself gave a new characterization of countably compact normal space. In this Note, we shall give a slight generalisation of Theorem 3 in [4]. Some writers ([2], [3], [5] and [6]) introduced the concepts of σ discrete, σ -locally finite, and σ -star finite coverings of topological space, and they obtained the interesting results on some topological spaces. Let α be a family of open sets in a topological space S. α is said to be *discrete*, if every point of S has a neighbourhood which meets at most one member of α . α is said to be *point finite*, if every point of S is contained in only finite many members of α . α is said to be *star finite*, if every member of α meets only finite many members of α . α is said to be *locally finite*, if every point of S has a neighbourhood which meets only finite members of α .

An open covering α is called σ -discrete (σ -point finite, σ -star finite or σ -locally finite), if $\alpha = \bigcup_{i=1}^{\infty} \alpha_i$ such that each α_i is discrete (point finite, star finite or locally finite). Then we shall prove the following

Theorem 1. The following propositions of a normal space S are equivalent:

- 1) S is countably compact.
- 2) Every σ -point finite open covering has a finite subcovering.
- 3) Every σ -locally finite open covering has a finite subcovering.
- 4) Every σ -star finite open covering has a finite subcovering.
- 5) Every σ -discrete open covering has a finite covering.

Proof. $(2) \rightarrow (1)$, $(3) \rightarrow (1)$ and $(4) \rightarrow (1)$ are obvious by Theorem 3 in [4]. $(5) \rightarrow (1)$ follows from the definition of countably compactness.

We must prove that (1) implies the other propositions (2), (3), (4) and (5). In general, $(2) \rightarrow (3)$, $(3) \rightarrow (4)$ are trivial.

First, we shall show $(1) \rightarrow (2)$. Let α be a σ -point finite open covering of S, then there is a system of family α_n of open sets such that $\alpha = \bigcup_i \alpha_i$ and each α_i is point finite. Let O_n be the sum of all members of α_n , then $\beta = \{O_n\}$ is a countable open covering of S. Since S is countably compact, β has a finite covering $\{O_{n_1}, \dots, O_{n_k}\}$. Then the system $\gamma = \{\alpha_{n_1}, \dots, \alpha_{n_k}\}$ is an open covering and it is obvious that γ is a point finite covering. Therefore, by Theorem 2 in [3], γ has a finite covering. This shows $(1) \rightarrow (2)$. Second, we shall show $(1) \rightarrow (5)$ by a similar method. Suppose that α is a σ -discrete open covering of S. Then we have $\alpha = \bigcup_n \alpha_n$, where each α_n is a family of discrete open sets of S. Let O_n be the sum of all members of α_n . Then $\beta = \{O_n\}$ is a countable open covering of S, and β has a finite covering $\{O_{n_1}, \dots, O_{n_k}\}$. Thus $\gamma = \{\alpha_{n_1}, \dots, \alpha_{n_k}\}$ is a locally finite open covering of S.

Hence, we can find a finite covering of γ by Theorem 2 in [3]. Therefore we have a proof of Theorem 1.

Any paracompact T_1 -space is normal, as shown by J. Dieudonné. Therefore we have Theorem 2, which contains a result by R. Arens and J. Dugundji [1, Th. 2.6]. It follows easily from Theorem 1.

Theorem 2. The following statements of a paracompact space S are equivalent:

1) S is compact.

2) Every σ -discrete open covering has a finite subcovering.

3) Every σ -point finite (or point finite) open covering has a finite subcovering.

4) Every σ -locally finite (or locally finite) open covering has a finite subcovering.

5) Every σ -star finite (or star finite) open covering has a finite subcovering.

6) S is countably compact.

In their famous article, Mémoire sur les espaces compacts, Proc. Academy of Amsterdam, 1929, P. Alexandroff and P. Urysohn introduced the notion of *H*-closed space, and proved that a T_2 -space S is *H*-closed if and only if every open covering $\{O_a\}$ has finite subfamily $\{O_{a_i}\}$ such that $\bigcup \overline{O}_{a_i} = S$. A covering α is said to be an *AU*-covering, if the covering α has a finite subfamily β such that the closure of the union of the members of β is S.

By the notion of AU-property, we shall prove the following

Theorem 3. The following propositions of a normal space S are equivalent:

1) S is countably compact.

2) Every σ -discrete open covering is the AU-covering.

3) Every σ -point finite (or point finite) open covering is the AU-covering.

4) Every σ -locally finite (or locally finite) open covering has the AU-covering.

5) Every σ -star finite (or star finite) open covering is the AU-covering.

Proof. By Theorem 1, it is clear that $(1) \rightarrow (2)$, (3), (4) and (5). On the other hand, the implication $(3) \rightarrow (4) \rightarrow (5)$ is clear. Therefore, it is sufficient to prove $2) \rightarrow 1$) and $5) \rightarrow 1$). To prove $5) \rightarrow 1$), let α be a star finite open covering. Since S is a normal space, α is shrinkable to a covering β . By 5), we can find a finite subfamily γ such that the closure of the union of members of γ is S. Therefore the family of finite members of α containing the members of γ is the AU-covering. This shows $5) \rightarrow 1$).

To prove that (2) implies (1), let us suppose that S is not countably compact, then there is an isolated set with denumerable elements x_n $(n=1, 2, \cdots)$. Therefore, by the normality of S, we can find a family of disjoint open sets O_n containing x_n . For each n, take open sets O'_n, O''_n such that $O_n \supseteq O'_n \supseteq O''_n$, and let $O'_{\infty} = S - \bigcup \overline{O}''_n$, then $\alpha = \{O'_{\infty}, O'_1, O'_2, \cdots, O'_n, \cdots\}$ is a σ -discrete open covering. α is not AU-covering.

It is easily seen that $x_{n+1} \in \bigcup_{i=1}^{n} \overline{O}'_{i}$ and $x_{n+1} \in \overline{O}'_{\infty}$, by $(S - \bigcup \overline{O}''_{n}) \frown O''_{n} = \phi$. Therefore we have $\bigcup_{i=1}^{n} \overline{O}'_{i} \bigcup \overline{O}'_{\infty} \neq S$ for any *n*. Hence we constructed a σ -discrete open covering which is no *AU*-covering.

Therefore, we have a proof of Theorem 3.

References

- R. Arens and J. Dugundji: Remark on the concept of compactness, Portugaliae Math., 9, 141-143 (1950).
- [2] R. H. Bing: Metrization of topological spaces, Canadian Jour. Math., 3, 175– 186 (1951).
- [3] K. Iséki: On hypocompact spaces, Portugaliae Math., 13, 149-152 (1954).
- [4] K. Iséki and S. Kasahara: On pseudo-compact and countably compact spaces, Proc. Japan Acad., 33, 100 (1957).
- [5] J. L. Kelley: General Topology, New York (1955).
- [6] E. A. Michael: A note on paracompact spaces, Proc. Am. Math. Soc., 4, 831– 838 (1953).