114. On B-covers and the Notion of Independence in Lattices

By Yataro Matsushima
Gunma University, Maebashi
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1957)

Introduction. In [3], L. M. Kelley has introduced the concept of B-covers as metric-between in a normed lattice. We have extended this notion to the case of general lattices in [4] and studied the geometries in lattices by means of B-covers and B^{*}-covers in [5]. In the first section of this paper we shall show that the relation "relative modularity" or "relative independence" which is derived from Wilcox [1] has a close connection with the J-cover or the $C J$ cover which is a part of the B-cover in lattices. In the second section we shall consider the relations between the B-covers and independent sets in lattices.

For any two elements a, b of a lattice L, we shall define as follows. $J(a, b)=\{x \mid(a \frown x) \smile(b \frown x)=x, x \in L\}, C J(a, b)=\{x \mid(a \smile x) \frown(b \smile x)=x$, $x \in L\}$. $J(a, b)$ is called the J-cover of a and b, and if $x \in J(a, b)$, then we shall write $J(a x b)$. Similarly we shall define $C J$-cover and $C J(a x b)$.
$B(a, b)=J(a, b) \frown C J(a, b)$ is called the B-cover of a and b and we shall write $a x b$ when $x \in B(a, b)$ (cf. [4, 5]).

1. Relative modular pairs and J-covers ($C J$-covers). Following L. R. Wilcox [1], (a, b) is called a modular pair when $x \leqq b$ implies $(x \smile a) \frown b=x \smile(a \frown b)$, and in this case we write $(a, b) M$. In [5] we defined a relative modular pair $(a, b) M^{*}$ to be a pair (a, b) such that $a \frown b \leqq x \leqq b$ implies $(x \smile a) \frown b=x \smile(a \frown b)$.
B-covers treat "between" in lattices (cf. [4, 5]), while J-covers and $C J$-covers may be considered as describing "semi-between" in lattices.
In the following L is always assumed to be a lattice.
Lemma 1.1. The following statements are equivalent in case $b^{\prime} \leqq b$:
(a) $\left(b^{\prime} \smile a\right) \frown b=b^{\prime} \smile(a \frown b)=b$. $\quad\left(\left(b^{\prime} \smile a\right) \frown b=b^{\prime} \smile(a \frown b)=b^{\prime}\right)$.
(b) $J\left(a b b^{\prime}\right)\left(C J\left(a b^{\prime} b\right)\right)$.

Proof. If $\left(b^{\prime} \smile a\right) \frown b=b^{\prime} \smile(a \frown b)=b$, then we have $(a \frown b) \smile\left(b \frown b^{\prime}\right)$ $=(a \frown b) \smile b^{\prime}=b$, that is $J\left(a b b^{\prime}\right)$. Conversely if $J\left(a b b^{\prime}\right)$, then we have $b=(a \frown b) \smile\left(b \frown b^{\prime}\right) \leqq b \frown\left(a \smile b^{\prime}\right) \leqq b$, and hence we have $\left(b^{\prime} \smile a\right) \frown b=b=b^{\prime}$ $\smile(a \frown b)$. Similarly we can treat the other case.

Theorem 1.1. If $J\left(a b b^{\prime}\right)\left(r e s p . C J\left(a b^{\prime} b\right)\right)$ holds for any b^{\prime} with $b^{\prime} \leqq b$ then we have $(a, b) M$.

Proof. It is obvious from Lemma 1.1.
Remark. ($a, b) M$ does not necessarily imply that either $J\left(a b b^{\prime}\right)$ or $C J\left(a b^{\prime} b\right)$ holds for any $b^{\prime} \leqq b$.

Indeed if $b \geqq a \geqq b^{\prime}$, then $(a, b) M$ but neither $J\left(a b b^{\prime}\right)$ nor $C J\left(a b^{\prime} b\right)$ since $(a \frown b) \smile\left(b \frown b^{\prime}\right)=a \smile b^{\prime}=a,\left(a \smile b^{\prime}\right) \frown\left(b^{\prime} \smile b\right)=a \frown b=a$.

Corollary 1.1. For $b^{\prime} \leqq b$, $b a b^{\prime}$ implies $\left(b^{\prime} \smile a\right) \frown b=b^{\prime} \smile(a \frown b)=a$ and vice versa.

Proof. If $b a b^{\prime}$, then we have $b \frown b^{\prime} \leqq a \leqq b \smile b^{\prime}$ by [4, Lemma 1], and hence $b^{\prime} \leqq a \leqq b$. Thus we have $\left(b^{\prime} \smile a\right) \frown b=b^{\prime} \smile(a \frown b)=a$.

Conversely if $\left(b^{\prime} \smile a\right) \frown b=b^{\prime} \smile(a \frown b)=a$, then we have $b^{\prime} \leqq a$ from $b^{\prime} \smile(a \frown b)=a$, and $a \leqq b$ from $\left(b^{\prime} \smile a\right) \frown b=a$. Hence we have $b^{\prime} \leqq a \leqq b$, thus we have $b a b^{\prime}$.

Lemma 1.2. For $b^{\prime} \leqq b,\left(b^{\prime} \smile a\right) \frown b=b^{\prime} \smile(a \frown b)=x$ implies $J\left(a x b^{\prime}\right)$ and $C J(a x b)$.

Proof. By hypothesis, we have $b^{\prime} \leqq x \leqq b$, and hence $(a \smile x) \frown(b \smile x)$ $=(a \smile x) \frown b=\left(a \smile b^{\prime} \smile(a \frown b)\right) \frown b=\left(a \smile b^{\prime}\right) \frown b=x$, that is $C J(a x b)$. Similarly $(a \frown x) \smile\left(b^{\prime} \frown x\right)=(a \frown x) \smile b^{\prime}=b^{\prime} \smile\left(a \frown b \frown\left(b^{\prime} \smile a\right)\right)=b^{\prime} \smile(a \frown b)=x$ by hypothesis; thus we have $J\left(a x b^{\prime}\right)$.

Remark. For $b^{\prime} \leqq b, C J(a x b)$ and $J\left(a x b^{\prime}\right)$ do not necessarily imply $\left(b^{\prime} \smile a\right) \frown b=b^{\prime} \smile(a \frown b)=x$.

For instance, if L contains 9 elements $a, b, a^{\prime}, b^{\prime}, a_{1}, b_{1}, e, f, x$ such that $f>b>b^{\prime}>b_{1}>e, f>a^{\prime}>a>a_{1}>e, a^{\prime} \frown b=x=a_{1} \smile b_{1}$, then we have $C J(a x b), J\left(a x b^{\prime}\right)$ but $\left(b^{\prime} \smile a\right) \frown b=b \neq x$.

Lemma 1.3. If $b^{\prime} \smile(a \frown b)$ belongs to $C J(a, b)$ for every b^{\prime} such that $b^{\prime} \leqq b$, then we have $(a, b) M$.

Proof. We have $\left(a \smile b^{\prime} \smile(a \frown b)\right) \frown\left(b \smile b^{\prime} \smile(a \frown b)\right)=b^{\prime} \smile(a \frown b)$ by hypothesis, and hence $\left(b^{\prime} \smile a\right) \frown b=b^{\prime} \smile(a \frown b)$ for $b^{\prime} \leqq b$, that is $(a, b) M$.

Lemma 1.4. If $\left(b^{\prime} \smile a\right) \frown b$ belongs to $J\left(a, b^{\prime}\right)$ for every b^{\prime} such that $b^{\prime} \leqq b$, then we have $(a, b) M$.

Proof. By hypothesis, we have $\left(a \frown\left(b^{\prime} \smile a\right) \frown b\right) \smile\left(b^{\prime} \frown\left(b^{\prime} \smile a\right) \frown b\right)=$ $\left(b^{\prime} \smile a\right) \frown b$, and hence $(a \frown b) \smile b^{\prime}=\left(b^{\prime} \smile a\right) \frown b$ for $b^{\prime} \leqq b$, that is $(a, b) M$.

Theorem 1.2. In L, the following statements are equivalent:
(a) $b^{\prime} \smile(a \frown b) \in C J(a, b)$ holds for every b^{\prime} with $b^{\prime} \leqq b$.
(b) $\quad\left(b^{\prime} \smile a\right) \frown b \in J\left(a, b^{\prime}\right)$ holds for every b^{\prime} with $b^{\prime} \leqq b$.
(c) $(a, b) M$.

Proof. It follows from Lemmas 1.2, 1.3 and 1.4.
Remark. $J\left(a, b^{\prime}\right) \ni b^{\prime} \smile(a \frown b)$ for any b^{\prime} with $b^{\prime} \leqq b$ does not necessarily imply $(a, b) M$.

For if L contains 5 elements a, b, b^{\prime}, e, f such that $f>b>b^{\prime}>e$, $f>a>e, a \smile b=a \smile b^{\prime}=f, a \frown b=a \frown b^{\prime}=e$, then $b^{\prime} \smile(a \frown b)=b^{\prime}$ belongs to $J\left(a, b^{\prime}\right)$, but $(a, b) M$ does not hold.

Theorem 1.3. If every element b^{\prime} such that $a \frown b \leqq b^{\prime} \leqq b$ belongs to $C J(a, b)$, then we have $(a, b) M^{*}$ and vice versa.

Proof. We have $\left(b^{\prime} \smile a\right) \frown b=\left(b^{\prime} \smile a\right) \frown\left(b^{\prime} \smile b\right)=b^{\prime}$ by $C J\left(a b^{\prime} b\right)$, and hence $b^{\prime} \frown(a \smile b)=\left(b^{\prime} \smile a\right) \frown b$ for $a \frown b \leqq b^{\prime} \leqq b$, thus we have $(a, b) M^{*}$. Conversely if $(a, b) M^{*}$, then $\left(a \smile b^{\prime}\right) \frown\left(b \smile b^{\prime}\right)=\left(a \smile b^{\prime}\right) \frown b=b^{\prime} \smile(a \frown b)=b^{\prime}$ for $a \frown b \leqq b^{\prime} \leqq b$, hence we have $C J\left(a b^{\prime} b\right)$.

Theorem 1.4. In $L,(a, b) M$ is equivalent to $(a, b) M^{*}$.
Proof. Since $(a, b) M$ implies $(a, b) M^{*}$, we have only to prove that $(a, b) M^{*}$ implies $(a, b) M$. Assume that $C J(a, b)$ contains every b^{\prime} such that $a \frown b \leqq b^{\prime} \leqq b$; then $b^{\prime \prime} \smile(a \frown b)$ belongs to $C J(a, b)$ for any $b^{\prime \prime} \leqq b$ since $a \frown b \leqq b^{\prime \prime} \smile(a \frown b) \leqq b$. Accordingly we have $(a, b) M$ by Lemma 1.3.

Theorem 1.4 is obtained in (2), (2), $\S 4$ in [5].
2. Independence. In this section we shall use the notations and lemmas obtained by L. R. Wilcox [1] and G. Birkhoff [2].

Definition. $(a, b) \perp$ means that $a \frown b=0,(a, b) M$.
Definition. We write $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \perp$ if $\left(\sum\left(a_{i} ; i \in S\right), \sum\left(a_{i}\right.\right.$; $i \in T)) \perp$ for every $S, T \subset[1,2, \cdots, n]$ for which $j \in S, k \in T$ implies $j<k$.

Lemma 2.1. If $(a, b) \perp, a^{\prime} \leqq a, b^{\prime} \leqq b$ imply $\left(a^{\prime}, b^{\prime}\right) \perp$.
Lemma 2.2. If $(a, b) M$ and $(c, a \smile b) M, c \frown(a \smile b) \leqq a$, then $(c \smile a$, b) M and $(c \cup a) \frown b=a \frown b$.

Lemma 2.3. If (a, b) M and $c \leqq b$, then $(c \smile a, b) M$.
Lemma 2.4. Let $n=1,2, \cdots$ and $a_{1}, a_{2}, \cdots, a_{n}$ be given.
Then $\left(a_{1}, \cdots, a_{n}\right) \perp$ if and only if $\left(a_{i}, a_{i+1} \smile \cdots \smile a_{n}\right) \perp$ for $i=1,2, \cdots$, $n-1$.

Definition. We write $\left(a_{1}, \cdots, a_{n}\right) \perp_{s}$ if $\left(a_{j_{1}}, a_{j_{2}}, \cdots, a_{j_{n}}\right) \perp$ for every permutation $i \rightarrow j_{i}$ of the set of integers $[1,2, \cdots, n]$.

Lemma 2.5. A lattice of finite length is semi-modular if and only if the relation of modularity between pairs of elements of L is symmetric.

Lemma 2.6. Let L be a semi-modular lattice of finite length; then $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \perp$ implies $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \perp_{s}$.

Now we shall define relative independence; we shall write $(a, b) \perp_{p}$ if $a \frown b=p,(a, b) M^{*}$. Then we have the next theorem.

Theorem 2.1
(a) $(a, b) \perp_{p}, p \leqq a^{\prime} \leqq a, p \leqq b^{\prime} \leqq b$ imply $\left(a^{\prime}, b^{\prime}\right) \perp_{p}$.
(b) $(a, b) \perp_{p},(c, a \smile b) \perp_{q}, q \leqq a$ imply $(c \cup a, b) \perp_{p}$.
(c) $(a, b) \perp_{p}, p \leqq c \leqq b$ imply $(c \smile a, b) \perp_{c}$.
(d) $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \perp_{p}$ is equivalent to $\left(a_{i}, a_{i+1} \smile \cdots \smile a_{n}\right) \perp_{p}, i=1$, $2, \cdots, n-1$.

Proof. Since $(a, b) M$ is equivalent to $(a, b) M^{*}$ by Theorem 1.4, we can easily prove this theorem by means of techniques similar to those of Wilcox [1].

Now we shall study the relations between the B-covers and independent sets in a lattice L.

Theorem 2.2. In a lattice L, let $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \perp$; then $x=a_{k_{1}} \cup a_{k_{2}}$ $\smile \cdots \smile a_{k_{t}}$ belongs to $B\left(a_{i}, a_{i+1} \smile \cdots \smile a_{n}\right)$, where k_{t} is an integer such that $i \leqq k_{1}<k_{2}<\cdots<k_{t} \leqq n, i=1,2, \cdots, n-1$.

Proof. (1) In case $k_{1}=i$, since $a_{k_{2}} \smile a_{k_{3}} \smile \cdots \smile a_{k_{t}} \leqq a_{i+1} \smile a_{i+2} \smile$ $\cdots \smile a_{n}$, we have $\left(a_{i} \frown x\right) \smile\left(\left(a_{i+1} \smile a_{i+2} \smile \cdots \smile a_{n}\right) \frown x\right)=a_{i} \smile\left(\left(a_{i+1} \smile a_{i+2} \smile\right.\right.$ $\left.\left.\cdots \smile a_{n}\right) \frown\left(a_{i} \smile a_{k_{2}} \smile \cdots \smile a_{k_{t}}\right)\right)=a_{i} \smile\left(a_{k_{2}} \smile \cdots \smile a_{k_{t}}\right) \smile\left(a_{i} \frown\left(a_{i+1} \smile a_{i+2} \smile\right.\right.$ $\left.\left.\cdots \smile a_{n}\right)\right)=a_{i} \smile\left(a_{k_{2}} \smile \cdots \smile a_{k_{t}}\right)=x \quad$ by $\quad\left(a_{i}, a_{i+1} \smile a_{i+2} \smile \cdots \smile a_{n}\right) M$ and $a_{i} \frown\left(a_{i+1} \smile a_{i+2} \smile \cdots \smile a_{n}\right)=0$. Furthermore we have $\left(a_{i} \smile x\right) \frown\left(a_{i+1} \smile a_{i+2}\right.$ $\left.\smile \cdots \smile a_{n} \smile x\right)=x$, since $a_{i} \leqq x$. Thus x belongs to $B\left(a_{i}, a_{i+1} \smile \cdots \smile a_{n}\right)$.
(2) In case $k_{1}>i$, we have $a_{i} \frown x=0$ since $a_{i} \frown x \leqq a_{i} \frown\left(a_{i+1} \smile \cdots\right.$ $\left.\smile a_{n}\right)=0$ by hypothesis. Hence we have $\left(\alpha_{i} \frown x\right) \smile\left(\left(a_{i+1} \smile \cdots \smile a_{n}\right) \frown x\right)=x$ from $x \leqq a_{i+1} \smile \cdots \smile a_{n}$.

On the other hand, $\left(a_{i} \smile x\right) \frown\left(a_{i+1} \smile \cdots \smile a_{n} \smile x\right)=a_{i} \smile a_{k_{1}} \smile a_{k_{2}} \smile \cdots$ $\left.\smile a_{k_{t}}\right) \frown\left(a_{i+1} \smile \cdots \smile a_{n}\right)=x \smile\left(a_{i} \curvearrowleft\left(\alpha_{i+1} \smile \cdots \smile a_{n}\right)\right)=x \quad$ by $\quad\left(\alpha_{i}, a_{i+1} \smile \cdots\right.$ $\left.\smile a_{n}\right) \perp$.

Corollary 2.1. Let L be a finite semi-modular lattice. If (a_{1}, a_{2}, $\left.\cdots, a_{n}\right) \perp$, then $B\left(a_{i}, a_{1} \smile a_{2} \smile \cdots \smile a_{i-1} \smile a_{i+1} \smile \cdots \smile a_{n}\right)$ contains $x=a_{k_{1}}$ $\smile a_{k_{2}} \smile \cdots \smile a_{k_{t}}$, where k_{t} is an integer such that $1 \leqq k_{1}<k_{2}<: \cdots<k_{t} \leqq n$, $i=1,2, \cdots, n$.

Proof. This is proved from Lemma 2.6 and Theorem 2.2.
Theorem 2.3. Let $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \perp$. Then we have
(a) $B\left(a_{1}, a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) \supset B\left(a_{2}, a_{3} \smile \cdots \smile a_{n}\right) \supset \cdots \supset B\left(a_{n-1}, a_{n}\right)$ in any lattice;
(b) $B\left(a_{1}, a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) \supset B\left(a_{1}, a_{2}\right), B\left(a_{1}, a_{3} \smile a_{4} \smile \cdots \smile a_{n}\right)$ etc. in a finite semi-modular lattice.

Proof. (a) If we take x from $B\left(a_{2}, a_{3} \smile \cdots \smile a_{n}\right)$, then we have $0 \leqq x \leqq a_{2} \smile a_{3} \smile \cdots \smile a_{n}$ by $\left(a_{2}, a_{3} \smile \cdots \smile a_{n}\right) \perp$ and [4, Lemma 1]. Hence by $\left(a_{1}, a_{2} \smile \cdots \smile a_{n}\right) M$ we have $\left(a_{1} \smile x\right) \frown\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right)=x \smile\left(a_{1} \frown\left(a_{2}\right.\right.$ $\left.\left.\smile a_{3} \smile \cdots \smile a_{n}\right)\right)=x$ since $a_{1} \frown\left(a_{2} \smile \cdots \smile a_{n}\right)=0$. Furthermore $\left(a_{1} \frown x\right) \smile$ $\left(\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) \frown x\right)=\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) \frown x=x$ from $a_{1} \frown x \leqq a_{1} \frown\left(a_{2} \smile\right.$ $\left.\cdots \smile a_{n}\right)=0$. Hence $B\left(a_{1}, a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right)$ contains x, that is, $B\left(a_{1}\right.$, $\left.a_{2} \smile \cdots \smile a_{n}\right) \supset B\left(a_{2}, a_{3} \smile a_{4} \smile \cdots \smile a_{n}\right)$. Similarly we can treat the other cases.
(b) If we take x from $B\left(a_{1}, a_{3} \smile a_{4} \smile \cdots \smile a_{n}\right)$, then we have $0 \leqq x \leqq a_{1} \smile a_{3} \smile a_{4} \smile \cdots \smile a_{n}$ by [4, Lemma 1] and ($a_{1}, a_{3} \smile \cdots \smile a_{n}$) \perp. Now by Lemma 2.6 we have $\left(a_{2}, a_{1} \smile a_{3} \smile \cdots \smile a_{n}\right) \perp$, and hence we have $\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n}, a_{1} \smile a_{3} \smile \cdots \smile a_{n}\right) M$ by Lemma 2.3.

Hence we have $P \equiv\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n} \smile x\right) \frown\left(a_{1} \smile a_{3} \smile \cdots \smile a_{n}\right)=x \smile$ $\left(\left(a_{1} \smile a_{3} \smile \cdots \smile a_{n}\right) \frown\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right)\right)$ from $\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n}, a_{1} \smile a_{3} \smile\right.$ $\left.\cdots \smile a_{n}\right) M$. But $\left(a_{1} \smile a_{3} \smile \cdots \smile a_{n}\right) \frown\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right)=a_{3} \smile a_{4} \smile \cdots \smile a_{n}$ from $\left(a_{2}, a_{1} \smile a_{3} \smile \cdots \smile a_{n}\right) \perp$. Hence $P=x \smile a_{3} \smile a_{4} \smile \cdots \smile a_{n}$.

Accordingly we have $\left(a_{1} \smile x\right) \frown\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n} \smile x\right)=\left(a_{1} \smile x\right) \frown\left(a_{2} \smile\right.$ $\left.a_{3} \smile \cdots \smile a_{n} \smile x\right) \frown\left(a_{1} \smile a_{3} \smile \cdots \smile a_{n}\right)=\left(a_{1} \smile x\right) \frown P=\left(a_{1} \smile x\right) \frown\left(a_{3} \smile a_{4} \smile \cdots\right.$
$\left.\smile a_{n} \smile x\right)=x$ by $x \in B\left(a_{1}, a_{3} \smile a_{4} \smile \cdots \smile a_{n}\right)$.
On the other hand, we have $x=\left(a_{1} \frown x\right) \smile\left(\left(a_{3} \smile a_{4} \smile \cdots \smile a_{n}\right) \frown x\right)$ $\leqq\left(a_{1} \frown x\right) \smile\left(\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) \frown x\right) \leqq x$, and hence we have $\left(a_{1} \frown x\right) \smile\left(\left(a_{2}\right.\right.$ $\left.\left.\smile a_{3} \smile \cdots \smile a_{n}\right) \frown x\right)=x$. Hence x belongs to $B\left(a_{1}, a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right)$, that is, $B\left(a_{1}, a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) \supset B\left(a_{1}, a_{3} \smile a_{4} \smile \cdots \smile a_{n}\right)$. Similarly we can treat the other cases.

Theorem 2.4. Let $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \perp$. Then we have
(a) $J\left(a_{1}, a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) \supset J\left(a_{1}^{\prime}, a_{2}^{\prime} \smile \cdots \smile a_{n}^{\prime}\right), C J\left(a_{1}, a_{2} \smile a_{3} \smile \cdots\right.$ $\left.\checkmark a_{n}\right) \subset C J\left(a_{1}^{\prime}, a_{2}^{\prime} \smile \cdots \smile a_{n}^{\prime}\right)$ in any lattice,
(b) $B\left(a_{1}, a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) \supset B\left(a_{1}^{\prime}, a_{2}^{\prime} \smile \cdots \smile a_{n}^{\prime}\right)$ in a semi-modular lattice of finite length, where $0 \leqq a_{i}^{\prime} \leqq a_{i}, i=1,2, \cdots, n$.

Proof. (a) If we take x from $J\left(a_{1}^{\prime}, a_{2}^{\prime} \smile \cdots \smile a_{n}^{\prime}\right)$, then we have $x=\left(a_{1}^{\prime} \frown x\right) \smile\left(\left(a_{2}^{\prime} \smile a_{3}^{\prime} \smile \cdots \smile a_{n}^{\prime}\right) \frown x\right) \leqq\left(a_{1} \frown x\right) \smile\left(\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) \frown x\right) \leqq x$. Hence $\left(a_{1} \frown x\right) \smile\left(\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) \frown x\right)=x$, and x belongs to $J\left(a_{1}, a_{2} \smile\right.$ $\left.a_{3} \smile \cdots \smile a_{n}\right)$. Thus we have $J\left(a_{1}, a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) \supset J\left(a_{1}^{\prime}, a_{2}^{\prime} \smile \cdots \smile a_{n}^{\prime}\right)$. Dually we have the other relation.
(b) If we take x from $B\left(a_{1}^{\prime}, a_{2}^{\prime} \smile \cdots \smile a_{n}^{\prime}\right)$, then we have $0 \leqq x \leqq$ $a_{1}^{\prime} \smile a_{2}^{\prime} \smile \cdots \smile a_{n}^{\prime}$ by [4, Lemma 1] and Lemma 2.1. Since $a_{1} \smile x \leqq a_{1} \smile$ $a_{2}^{\prime} \smile \cdots \smile a_{n}^{\prime}, x \smile a_{2} \smile a_{3} \smile \cdots \smile a_{n} \leqq a_{1}^{\prime} \smile a_{2} \smile a_{3} \smile \cdots \smile a_{n}$, we have $\left(a_{1} \smile x\right)$ $\frown\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n} \smile x\right)=\left(a_{1} \smile x\right) \frown\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n} \smile x\right) \frown\left(a_{1} \smile a_{2}^{\prime} \smile a_{3}^{\prime} \smile\right.$ $\left.\cdots \smile a_{n}^{\prime}\right) \frown\left(a_{1}^{\prime} \smile a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right)$.

Now we have $\left(a_{1} \smile a_{2}^{\prime} \smile a_{3}^{\prime} \smile \cdots \smile a_{n}^{\prime}, a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) M$ by Lemma 2.3, and hence $\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n}, a_{1} \smile a_{2}^{\prime} \smile \cdots \smile a_{n}^{\prime}\right) M$ by semi-modularity. Hence we have $\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n} \smile x\right) \frown\left(a_{1} \smile a_{2}^{\prime} \smile a_{3}^{\prime} \smile \cdots \smile a_{n}^{\prime}\right)=x \smile\left(\left(a_{2} \smile\right.\right.$ $\left.\left.a_{3} \smile \cdots \smile a_{n}\right) \frown\left(a_{1} \smile a_{2}^{\prime} \smile \cdots \smile a_{n}^{\prime}\right)\right)=x \smile a_{2}^{\prime} \smile a_{3}^{\prime} \smile \cdots \smile a_{n}^{\prime}$ since $\left(a_{2} \smile a_{3} \smile\right.$ $\left.\cdots \smile a_{n}\right) \frown\left(a_{1} \smile a_{2}^{\prime} \smile \cdots \smile a_{n}^{\prime}\right)=a_{2}^{\prime} \smile \cdots \smile a_{n}^{\prime} \quad$ by $\left(a_{1}, a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) \perp$. In the same way we have $\left(a_{1} \smile x\right) \frown\left(a_{1}^{\prime} \smile a_{2} \smile \cdots \smile a_{n}\right)=x \smile a_{1}^{\prime}$ since $a_{1} \frown\left(a_{1}^{\prime} \smile a_{2} \smile \cdots \smile a_{n}\right)=a_{1}^{\prime}$ by $\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n}, a_{1}\right) \perp$.

Accordingly we have $\left(a_{1} \smile x\right) \frown\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n} \smile x\right)=\left(a_{2} \smile a_{3} \smile \cdots\right.$ $\left.\smile a_{n} \smile x\right) \frown\left(a_{1} \smile a_{2}^{\prime} \smile a_{3}^{\prime} \smile \cdots \smile a_{n}^{\prime}\right) \frown\left(a_{1} \smile x\right) \frown\left(a_{1}^{\prime} \smile a_{2} \smile \cdots \smile a_{n}\right)=\left(a_{1}^{\prime} \smile x\right) \frown$ $\left(x \smile a_{2}^{\prime} \smile a_{3}^{\prime} \smile \cdots \smile a_{n}^{\prime}\right)=x$ by hypothesis. Furthermore, from the proof of (a), we have $\left(a_{1} \frown x\right) \smile\left(\left(a_{2} \smile a_{3} \smile \cdots \smile a_{n}\right) \frown x\right)=x$. This completes the proof of (b).

Theorem 2.5. Let L be a lattice with 0 , and if $C J\left(a_{i}, a_{i+1} \smile \ldots\right.$ $\left.\checkmark a_{n}\right)=L$ for $i=1,2, \cdots, n-1$, then $\left(a_{1}, a_{2}, \cdots, a_{n}\right) \perp$.

Proof. (1) If we take x from L, then from $x \in C J\left(a_{i}, a_{i+1} \cup \ldots\right.$ $\left.\smile a_{n}\right)$ we have $\left(a_{i} \smile x\right) \frown\left(a_{i+1} \smile \cdots \smile a_{n} \smile x\right)=x$, hence $a_{i} \frown\left(a_{i+1} \smile \cdots \smile a_{n}\right)$ $\leqq x$ for any $x \in L$. But L contains 0 , then $a_{i} \frown\left(a_{i+1} \smile \cdots \smile a_{n}\right)=0$.
(2) Take x^{\prime} such that $x^{\prime} \leqq a_{i+1} \smile \cdots \smile a_{n}$ in L, then we have by hypothesis $x^{\prime}=\left(a_{i} \smile x^{\prime}\right) \frown\left(a_{i+1} \smile \cdots \smile a_{n} \smile x^{\prime}\right)=\left(a_{i} \smile x^{\prime}\right) \frown\left(a_{i+1} \smile \cdots \smile a_{n}\right)$. On the other hand, we have $x^{\prime} \smile\left(a_{i} \frown\left(a_{i+1} \smile \cdots \smile a_{n}\right)\right)=x^{\prime}$ from $a_{i} \frown$ $\left(a_{i+1} \smile \cdots \smile a_{n}\right)=0$.

Accordingly we have $\left(a_{i}, a_{i+1} \smile \cdots \smile a_{n}\right) M$. From (1), (2) we have
$\left(a_{1}, a_{2}, \cdots, a_{n}\right) \perp$.
Definition. We write $(a, S) \perp$ if $(a, x) \perp$ (i.e. $a \frown x=0$ and $(a, x) M)$ for all $x \in S$.

Theorem 2.6. In a lattice, the following statements are equivalent.
(a) $\left(a_{1}, a_{2}, a_{3}\right) \perp$,
(b) $\left(a_{1}, J\left(a_{2}, a_{3}\right)\right) \perp,\left(a_{2}, J\left(a_{3}, 0\right)\right) \perp$.

Proof. If ($\left.a_{1}, a_{2}, a_{3}\right) \perp$, and if we take x from $J\left(a_{2}, a_{3}\right)$, then we have $a_{1} \frown x=a_{1} \frown\left(\left(a_{2} \frown x\right) \smile\left(a_{3} \frown x\right)\right) \leqq a_{1} \frown x \frown\left(a_{2} \smile a_{3}\right)=0$, and hence we have $a_{1} \frown J\left(a_{2}, a_{3}\right)=0$. Furthermore, since $0 \leqq J\left(a_{2}, a_{3}\right) \leqq a_{2} \smile a_{3}$, we have $\left(a_{1}, J\left(a_{2}, a_{3}\right)\right) M$ by Lemma 2.1. Thus we have $\left(a_{1}, J\left(a_{2}, a_{3}\right)\right) \perp$, similarly $\left(a_{2}, J\left(a_{3}, 0\right)\right) \perp$.

Conversely if $\left(a_{1}, J\left(a_{2}, a_{3}\right)\right) \perp$, and $\left(a_{2}, J\left(a_{3}, 0\right)\right) \perp$, then we have $\left(a_{1}, a_{2} \smile a_{3}\right) \perp$ and $\left(a_{2}, a_{3}\right) \perp$ since $a_{2} \smile a_{3} \in J\left(a_{2}, a_{3}\right), a_{3} \in J\left(a_{3}, 0\right)$. Thus we have $\left(a_{1}, a_{2}, a_{3}\right) \perp$.

Theorem 2.7. In a lattice L with 0 , let S be a subset of L with the greatest element, and if $C J(a, S)=L$, then we have $(a, S) \perp$.

Proof. Let m be the greatest element of S, and if we take x from L, then we have $(a \smile x) \frown(m \smile x)=x$ from $x \in C J(a, S)$. Hence we have $a \frown m \leqq x$ for any $x \in L$. However L contains 0 and hence $a \frown m=0$. Thus we have $a \frown S=0$. If we take x^{\prime} such that $x^{\prime} \leqq m$ in L, then from $C J(a, m) \ni x^{\prime}$, we have $x^{\prime}=\left(a \smile x^{\prime}\right) \frown\left(m \smile x^{\prime}\right)=\left(a \smile x^{\prime}\right) \frown m$. On the other hand, since $a \frown m=0$, we have $x^{\prime} \smile(a \frown m)=x^{\prime}$.
Hence $\left(a \smile x^{\prime}\right) \frown m=x^{\prime} \smile(a \frown m)$, that is $(a, m) M$. Thus we have $(a, S) M$; this completes the proof.

References

[1] L. R. Wilcox: Modularity in the theory of lattices, Ann. Math., 40 (1939).
[2] G. Birkhoff: Lattice Theory, rev. ed., New York (1948).
[3] L. M. Kelley: The geometry of normed lattice, Duke Math. J., 19 (1952).
[4] Y. Matsushima: On the B-covers in lattices, Proc. Japan Acad., 32 (1956).
[5] Y. Matsushima: The geometry of lattices by B-covers, Proc. Japan Acad., 33 (1957).

