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Introduction. In 3, L. M. Kelley has introduced the concept of
B-covers as metric-between in a normed lattice. We have extended
this notion to the case of general lattices in [4 and studied the
geometries in lattices by means of B-covers and B*-covers in [5J.
In the first section of this paper we shall show that the relation
"relative modularity" or "relative independence" which is derived
from Wilcox _lJ has a close connection with the J-cover or the CJ-
cover which is a part of the B-cover in lattices. In the second
section we shall consider the relations between the B-covers and inde-
pendent sets in lattices.

For any two elements a, b of a lattice L, we shall define as follows.
J(a, b)-- {x (ax)(bx)--x, x e L}, CJ(a, b)- {x (ax)(bx)--x,

x e L}. J(a, b) is called the J-cover of a and b, and if x e J(a, b), then
we shall write J(axb). Similarly we shall define CJ-cover and CJ(axb).

B(a, b)--J(a, b)CJ(a, b) is called the B-cover of a and b and we
shall write axb when x eB(a, b) (cf. [4, 5).

1. Relative modular pairs and J-covers (CJ-covers). Following
L. R. Wilcox 1, (a,b)is called a modular pair when xb implies

(xa)b-x(ab), and in this case we write (a, b)M. In [_5 we
defined a relative modular pair (a, b)M* to be a pair (a, b) such that
abxb implies (xa)b-x(ab).

B-covers treat "between" in lattices (cf. [4, 5), while J-covers
and CJ-covers may be considered as describing "semi-between" in
lattices.
In the following L is always assumed to be a lattice.

Lemma 1.1. The following statements are equivalent in case

b’b:
a ) (b’a)b-b’(ab)-b. ((b’a)b--b’(ab)--b’).

( b J(abb’) (CJ(ab’b)).
Proof. If (b’a)b--b’(ab)--b, then we have (ab)(bb’)

--(ab)b’--b, that is J(abb’). Conversely if J(abb’), then we have
b-(ab)(bb’)b(ab’)b, and hence we have (b’a)b-b--b’
(ab). Similarly we can treat the other case.

Theorem 1.1. If J(abb’) (resp. CJ(ab’b)) holds for any b’ with
b’_b then we have (a, b)M.
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Proof. It is obvious from Lemma 1.1.
Remark. (a,b)M does not necessarily imply that either J(abb’)

or CJ(ab’b) holds for any b’b.
Indeed if bab’, then (a, b)M but neither J(abb’) nor CJ(ab’b)

since (ab)(bb’)-ab’-a, (ab’)(b’b)-ab-a.
Corollary 1.1. For b’b, bab’ implies (b’a)b-b’(ab)--a

and vice versa.
Proof. If bab’, then we have bb’abb’ by [4, Lemma 1,

and hence b’ab. Thus we have (b’a)b-b’(ab)--a.
Conversely if (b’a)b-b’(ab)-a, then we have b’a from

b’(ab)-a, and ab from (b’a)b=a. Hence we have b’ab,
thus we have bab’.

Lemma 1.2. For b’b, (b’a)b--b’(ab)--x implies J(axb’)
and CJ(axb).

Proof. By hypothesis, we have b’xb, and hence (ax)(bx)
=(ax)b-(ab’(ab))b-(ab’)b=x, that is CJ(axb). Simi-
larly (ax)(b’x)--(ax)b’-b’(ab(b’a))--b’(ab)--x by
hypothesis; thus we have J(axb’).

Remark. For b’b, CJ(axb) and J(axb’) do not necessarily imply
(b’a)b-b’(ab)--x.

For instance, if L contains 9 elements a, b, a’, b’, a, b, e, f, x such
that f>b>b’>bl>e, f>a’>a>ae,a’b--x=albl, then we have
CJ(axb), J(axb’) but (b’a)b-b =x.

Lemma 1.3. If b’(ab) belongs to CJ(a, b) for every b’ such
that b’b, then we have (a, b)M.

Proof. We have (ab’(ab))(bb’(ab))-- b’(ab) by
hypothesis, and hence (b’a)b--b’(ab) for b’_b, that is (a, b)M.

Lemma 1.4. If (b’a)b belongs to J(a,b’) for every b’ such
that b’b, then we have (a, b)M.

Proof. By hypothesis, we have (a(b’a)b)(b’(b’a)b)--
(b’a)b, and hence (ab)b’-(b’a)b for b’b, that is (a, b)M.

Theorem 1.2. In L, the following statements are equivalent:
( a) b’(ab)eCJ(a, b) holds for every b’ with b’b.
(b) (b’a)b e J(a, b’) holds for every b’ with b’b.
( c ) (a, b)M.
Proof. It follows from Lemmas 1.2, 1.3 and 1.4.
Remark. J(a, b’)b’(ab) for any b’ with b’b does not neces-

sarily imply (a, b)M.
For if L contains 5 elements a, b, b’, e, f such that

f>a>e, ab--ab’-- f, ab--ab’--e, then b’(ab)-b’ belongs
to J(a, b’), but (a, b)M does not hold.

Theorem 1.3. If every element b’ such that abb’b belongs
to CJ(a, b), then we have (a, b)M* and vice versa.
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Proof. We have (b’a)b--(b’a)(b’b)---b’ by CJ(ab’b), and
hence b’(ab)-(b’a)b for abb’b, thus we have (a,b)M*.
Conversely if (a,b)M*, then (ab’)(bb’)--(a-b’)b--b’(ab)--b’
for ab<___b’b, hence we have CJ(ab’b).

Theorem 1.4. In L, (a, b)M is equivalen o (a, b)M*.
Proof. Since (a, b)M implies (a, b)M*, we have only to prove that

(a, b)M* implies (a, b)M. Assume that CJ(a, b) contains every b’ such
that ab<___b’b; then b"(ab) belongs to CJ(a,b)for any b"b
since abb"(ab)b. Accordingly we have (a, b)M by Lemma 1.3.

Theorem 1.4 is obtained in (, (2), 4 in 5.
2. Independence. In this section we shall use the notations and

lemmas obtained by L. R. Wilcox 1 and G. Birkhoff 2.
Definition. (a, b)_L means that ab-O, (a, b)M.
Definition. We write (a, a,..., a)+/- if (- (a; i e S), , (a;

i e T)) for every S, T 1, 2,..., n] for which 3"e S, k e T implies
’<k.

Lemma 2.1. If (a, b) +/-, a’a, b’b imply (a’, b’)_L.
Lemma 2.2. If (a, b)M and (c, ab)M, c(ab)a, then (ca,

b)M and (ca)b-ab.
Lemma 2.3. If (a, b)M and c_<__b, then (ca, b)M.
Lemma 2.4. Let n-l, 2,... and a,, a.,..., a be given.

Then (a,..., an)_L if and only if (a, a+... -an)-k for i--l, 2,...,
n--1.

Definition. We Write (a,,..., a)+/-s if (a, a,..., a)+/- for every
permutation i-+3" of the set of integers 1, 2,..., n.

Lemma 2.5. A lattice of finite length is semi-modular if and only
if the relation of modularity between pairs of elements of L is sym-
metric.

Lemma 2.6. Let L be a semi-modular lattice of finite length;
then (a, a,..., a)+/- implies (a,, a,..., a)+/- .

Now we shall define relative independence; we shall write (a, b)_L
if ab-p, (a, b)M*. Then we have the next theorem.

Theorem 2.1
( a ) (a, b)_L , pa’a, pb’<=b imply (a’, b’)_L .
( b ) (a, b)+/-, (c, ab)_L, qa imply (ca, b)_L.
(c) (a, b)_L, p<_c<__b imply (ca, b)_L.
(d) (a,, a,. ., a)_L is equivalent to (a, a+,.. a)_L, i-- 1,

2,..., n--1.
Proof. Since (a, b)M is equivalent to (a,b)M* by Theorem 1.4,

we can easily prove this theorem by means of techniques similar to
those of Wilcox [1.

Now we shall study the relations between the B-covers nd
independent sets in a lattice L.
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Theorem 2.2. In a lattice L, let (as, a.,..., an)J_ then
v. vakt belongs to B(ai, ai/v. van), where kt is an integer such
that ikl<k.< <ktn, i--l, 2,..., n--1.

v ai+l..ai+2..Proof. (1) In case kl--i, since a.vak
..van, we have (ax)v((a/va/2v..
van) (avak.v... vast) at v (a.v... vast) (a(a/

..va))--av (av... vast)-- x by (a, a/va/....va)M and
a(a/va/v... a,)--0. Furthermore we have (avx)(a/a/
v... vanvx)-x, since ax. Thus x belongs to B(a, ai/

(2) In case k>i, we have ax-O since
van)-0 by hypothesis. Hence we have (ax)v((a/v...
from x<:a +2v" van.

On the other hand, (a,.,x)(a/...ax)-aaa....
,...at f., (ai+’, ",an) xv(a(a/v va)) x by (a, a/v.
’-an) +/-

Corollary 2.1. Let L be a finite semi-modular lattice. If (as, a,
.., an)+/-, then B(a, avav...va_va/... ..an) contains x--ak

vak.v...,,-at where kt is an integer such that lk<k.<...
i--l, 2,..., n.

Proof. This is proved from Lemma 2.6 and Theorem 2.2.
Theorem 2.3. Let (a, a,..., an)+/-. Then we have
a B(a, avav.., van) B(a, asv... .an) ... B(an_,

in any lattice;
(b) B(a, a.vasv van) B(a, a), B(a, asvav van) etc.

in a finite semi-modular lattice.
Proof. (a) If we take x from B(a., as...a), then we have

Oxa.vasv...van by (a, av.., van)+/- and [4, Lemma lJ. Hence
by (a, a.v.., van)M we have (avx)(a.vav...
vasv...van))-x since a(av...van)-O. Furthermore (ax)
((a.vav...van),-,x)--(a.vav...van)x--x from

Van)--O. Hence B(a, a.a...a) contains x, that is, B(a,
a.v.., van)B(a., as,.,a...,.-an). Similarly we can treat the other
cases.

(b) If we take x from B(a,as,.a,.,...,.-an), then we have
Oxaasa.,...a by [4, Lemma 1 and (a, a-.- a.)+/-.
Now by Lemma 2.6 we have (a.,aa,... "Van)+/-, and hence we
have (a.as ,..a,, aas a)M by Lemma 2.3.

Hence we have P=---(a.as...ax)-,(aas...an)-X
((aas...an)(a.,.as’-...an)) from (aas...,.-an,aa

van)M. But (avasv... van),.,(a.vav.., van)--asvav...van
from (a., a.,a...,.-a)_l_. Hence P--xasa,.-...,.a.

Accordingly we have (a,.-x)(aa,..... ax)--(ax)-,(a.
asv.., vanvx)(alvasv.., van)-(avx)P (avx)(a
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ax)-=x by x B(a, asa a).
On the other hand, we have x-(a-,x)((aa...a)x)

(ax)((aa...a)x)x, and hence we have (ax)((a
a. a)x)-x. Hence x belongs to B(a, aa. a), that
is, B(a, aas. a) B(a, aa. a). Similarly we can
treat the other cases.

Theorem 2.4. Let (a, a,..., an). Then we have
( a ) J(a, aas... an) J(a, a... a), CJ(a, aas...

a,) CJ(a,a a) in any lattice,
(b) B(a, aa. a)B(a,a. a) in a semi-modular

lattice of finite length, where Oaa, i--1, 2,..., n.
Proof. (a) If we take x from J(a, a...a), then we have

x-(ax)((aa a:)x)(ax)((aas a)x) x.
Hence (ax)((aza...a,)x)--x, and x belongs to J(a,a
as... a). Thus we have J(a, aas. a)J(a, a. a).
Dually we have the other relation.

(b) If we take x from B(a, a...a), then we have 0x
ala... a, by [4, Lemma 1 and Lemma 2.1. Since axa
a...a, xaas...aaaa...an, we have (ax)

x)
a)(aaa... an).
Now we have (aaa...a, aas...a)M by Lemma

2.3, and hence (aa an,aa. a,)M by semi-modularity.
Hence we have (aa...ax)(aaa...a)=x((a
as a) (aa a)) xaa a since (aas

an) (aa...a) a...a by (a, a as an).
In the same way we have (ax)(aa...an)-Xa since
a (aa...a) a by (aas... a, a) 2.

Accordingly we have (ax)(aa...anX)--(aas...
ax)(aaa (a
(xaa...a)--x by hypothesis. Furthermore, from the proof
of (a), we have (ax)((aas... an))--X. This completes the
proof of (b).

Theorem 2.5. Let L be a lattice with O, a if CJ(a, a+...
a) L for i-- 1, 2,..., n-- 1, then (a, a, an)

Proof. (1) If we take x from L, then from x eCJ(a,a.+...
an) we have (ax)(a+... a,x)-x, hence a(a+...a)
x for any x eL. But L contains 0, then a(a+...a)--O.

(2) Take x’ such that x’a+...an in L, then we have by
hypothesis x’-(ax’)(a+ ax’) (ax’)(a+. a).
On the other hand., we have x’(a(a+...a))-x’ from a

0.
Accordingly we have (a, a+... an)M. From (1), (2)we have
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(al, a2,. ., an)+/-.
Definition. We write (a, S)_ if (a, x)+/- (i.e. ax-O and (a, x)M)

for all x e S.
Theorem 2.6. In a lattice, the following statements are equivalent.
a ) (as, a2, as)+/-,
b (a, J(a., as))+/-, (a, J(as, 0))+/-.

Proof. If (a, a:, as)L, and if we take x from J(a:, a), then we
have alx-al((a.x)(asx))ax(a:as)-O, and hence we
have aJ(a:,as)--O. Furthermore, since OJ(a.,as)a2a., we
have (al, J(a2, as))M by Lemm 2.1. Thus we have (as, J(a, as))+/-,
similarly (a., J(as, 0)) +/-.

Conversely if (a,J(a,as))+/-, and (a,J(as, 0))+/-, then we have
(a, a.as) +/- and (a, as)+/- since a.as J(a., as), as J(as, 0). Thus
we have (a, a, as)+/-.

Theorem 2.7. In a lattice L with 0, let S be a subset of L with
the greatest element, and if CJ(a, S)-L, then we have (a, S)+/-.

Proof. Let m be the greatest element of S, and if we take x from
L, thenwe have (ax)(mx)-x from xCJ(a, S). Hence we have
amx for any x eL. However L contains 0 and hence am-O.
Thus we have aS-O. If we take x’ such that x’m in L, then
from CJ(a, m)-x’, we have x’--(ax’)(mx’)-(ax’)m. On the
other hand, since am-O, we have x’(am)-x’.
Hence (ax’)m-x’(am), that is (a, m)M. Thus we have (a, S)M;
this completes the proof.
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