114. On B-covers and the Notion of Independence in Lattices

By Yataro Matsushima

Gunma University, Maebashi (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1957)

Introduction. In [3], L. M. Kelley has introduced the concept of *B*-covers as metric-between in a normed lattice. We have extended this notion to the case of general lattices in [4] and studied the geometries in lattices by means of *B*-covers and *B*^{*}-covers in [5]. In the first section of this paper we shall show that the relation "relative modularity" or "relative independence" which is derived from Wilcox [1] has a close connection with the *J*-cover or the *CJ*-cover which is a part of the *B*-cover in lattices. In the second section we shall consider the relations between the *B*-covers and independent sets in lattices.

For any two elements a, b of a lattice L, we shall define as follows.

 $J(a,b) = \{x \mid (a \frown x) \smile (b \frown x) = x, x \in L\}, CJ(a,b) = \{x \mid (a \smile x) \frown (b \smile x) = x, x \in L\}.$ J(a,b) is called the *J*-cover of *a* and *b*, and if $x \in J(a,b)$, then we shall write J(axb). Similarly we shall define *CJ*-cover and *CJ(axb)*.

 $B(a, b) = J(a, b) \frown CJ(a, b)$ is called the *B*-cover of *a* and *b* and we shall write *axb* when $x \in B(a, b)$ (cf. [4, 5]).

1. Relative modular pairs and J-covers (CJ-covers). Following L. R. Wilcox [1], (a, b) is called a modular pair when $x \leq b$ implies $(x \sim a) \neg b = x \sim (a \neg b)$, and in this case we write (a, b)M. In [5] we defined a relative modular pair $(a, b)M^*$ to be a pair (a, b) such that $a \neg b \leq x \leq b$ implies $(x \sim a) \neg b = x \sim (a \neg b)$.

B-covers treat "between" in lattices (cf. [4, 5]), while *J*-covers and *CJ*-covers may be considered as describing "semi-between" in lattices.

In the following L is always assumed to be a lattice.

Lemma 1.1. The following statements are equivalent in case $b' \leq b$:

- (a) (b' a) b = b' (a b) = b. ((b' a) b = b' (a b) = b').
- (b) J(abb') (CJ(ab'b)).

Proof. If $(b' \multimap a) \frown b = b' \smile (a \frown b) = b$, then we have $(a \frown b) \smile (b \frown b') = (a \frown b) \smile b' = b$, that is J(abb'). Conversely if J(abb'), then we have $b = (a \frown b) \smile (b \frown b') \leq b \frown (a \smile b') \leq b$, and hence we have $(b' \smile a) \frown b = b = b' \cup (a \frown b)$. Similarly we can treat the other case.

Theorem 1.1. If J(abb') (resp. CJ(ab'b)) holds for any b' with $b' \leq b$ then we have (a, b)M.

Proof. It is obvious from Lemma 1.1.

No. 8]

Remark. (a, b)M does not necessarily imply that either J(abb') or CJ(ab'b) holds for any $b' \leq b$.

Indeed if $b \ge a \ge b'$, then (a, b)M but neither J(abb') nor CJ(ab'b)since $(a \frown b) \smile (b \frown b') = a \smile b' = a$, $(a \smile b') \frown (b' \smile b) = a \frown b = a$.

Corollary 1.1. For $b' \leq b$, bab' implies $(b' \cup a) \cap b = b' \cup (a \cap b) = a$ and vice versa.

Proof. If bab', then we have $b \frown b' \leq a \leq b \smile b'$ by [4, Lemma 1], and hence $b' \leq a \leq b$. Thus we have $(b' \smile a) \frown b = b' \smile (a \frown b) = a$.

Conversely if $(b' \smile a) \frown b = b' \smile (a \frown b) = a$, then we have $b' \leq a$ from $b' \smile (a \frown b) = a$, and $a \leq b$ from $(b' \smile a) \frown b = a$. Hence we have $b' \leq a \leq b$, thus we have bab'.

Lemma 1.2. For $b' \leq b$, $(b' \sim a) \frown b = b' \sim (a \frown b) = x$ implies J(axb')and CJ(axb).

Proof. By hypothesis, we have $b' \leq x \leq b$, and hence $(a \sim x) \frown (b \sim x) = (a \sim x) \frown b = (a \sim b' \smile (a \cap b)) \frown b = (a \sim b') \frown b = x$, that is CJ(axb). Similarly $(a \cap x) \smile (b' \cap x) = (a \cap x) \smile b' = b' \smile (a \cap b \cap (b' \multimap a)) = b' \smile (a \cap b) = x$ by hypothesis; thus we have J(axb').

Remark. For $b' \leq b$, CJ(axb) and J(axb') do not necessarily imply $(b' \sim a) \frown b = b' \smile (a \frown b) = x$.

For instance, if L contains 9 elements $a, b, a', b', a_1, b_1, e, f, x$ such that $f > b > b' > b_1 > e, f > a' > a > a_1 > e, a' \neg b = x = a_1 \cup b_1$, then we have CJ(axb), J(axb') but $(b' \cup a) \neg b = b \neq x$.

Lemma 1.3. If $b' \smile (a \frown b)$ belongs to CJ(a, b) for every b' such that $b' \leq b$, then we have (a, b)M.

Proof. We have $(a \smile b' \smile (a \frown b)) \frown (b \smile b' \smile (a \frown b)) = b' \smile (a \frown b)$ by hypothesis, and hence $(b' \smile a) \frown b = b' \smile (a \frown b)$ for $b' \leq b$, that is (a, b)M.

Lemma 1.4. If $(b' \smile a) \frown b$ belongs to J(a, b') for every b' such that $b' \leq b$, then we have (a, b)M.

Proof. By hypothesis, we have $(a \frown (b' \frown a) \frown b) \smile (b' \frown (b' \frown a) \frown b) = (b' \frown a) \frown b$, and hence $(a \frown b) \smile b' = (b' \frown a) \frown b$ for $b' \leq b$, that is (a, b)M.

Theorem 1.2. In L, the following statements are equivalent:

(a) $b' \smile (a \frown b) \in CJ(a, b)$ holds for every b' with $b' \leq b$.

(b) $(b' \smile a) \frown b \in J(a, b')$ holds for every b' with $b' \leq b$.

(c) (a, b)M.

Proof. It follows from Lemmas 1.2, 1.3 and 1.4.

Remark. $J(a, b') \ni b' \smile (a \frown b)$ for any b' with $b' \leq b$ does not necessarily imply (a, b)M.

For if L contains 5 elements a, b, b', e, f such that f > b > b' > e, f > a > e, $a \smile b = a \smile b' = f$, $a \frown b = a \frown b' = e$, then $b' \smile (a \frown b) = b'$ belongs to J(a, b'), but (a, b)M does not hold.

Theorem 1.3. If every element b' such that $a \frown b \leq b' \leq b$ belongs to CJ(a, b), then we have $(a, b)M^*$ and vice versa.

Y. MATSUSHIMA

Proof. We have $(b' \multimap a) \frown b = (b' \smile a) \frown (b' \smile b) = b'$ by CJ(ab'b), and hence $b' \frown (a \smile b) = (b' \smile a) \frown b$ for $a \frown b \le b' \le b$, thus we have $(a, b)M^*$. Conversely if $(a, b)M^*$, then $(a \smile b') \frown (b \smile b') = (a \smile b') \frown b = b' \smile (a \frown b) = b'$ for $a \frown b \le b' \le b$, hence we have CJ(ab'b).

Theorem 1.4. In L, (a, b)M is equivalent to $(a, b)M^*$.

Proof. Since (a, b)M implies $(a, b)M^*$, we have only to prove that $(a, b)M^*$ implies (a, b)M. Assume that CJ(a, b) contains every b' such that $a \frown b \leq b' \leq b$; then $b'' \smile (a \frown b)$ belongs to CJ(a, b) for any $b'' \leq b$ since $a \frown b \leq b' \smile (a \frown b) \leq b$. Accordingly we have (a, b)M by Lemma 1.3. Theorem 1.4 is obtained in (2), (2), § 4 in [5].

2. Independence. In this section we shall use the notations and lemmas obtained by L. R. Wilcox $\lceil 1 \rceil$ and G. Birkhoff $\lceil 2 \rceil$.

Definition. $(a, b) \perp$ means that $a \frown b = 0$, (a, b)M.

Definition. We write $(a_1, a_2, \dots, a_n) \perp$ if $(\sum (a_i; i \in S), \sum (a_i; i \in T)) \perp$ for every $S, T \subset [1, 2, \dots, n]$ for which $j \in S, k \in T$ implies j < k.

Lemma 2.1. If $(a, b) \perp$, $a' \leq a$, $b' \leq b$ imply $(a', b') \perp$.

Lemma 2.2. If (a, b)M and $(c, a \smile b)M$, $c \frown (a \smile b) \leq a$, then $(c \smile a, b)M$ and $(c \smile a) \frown b = a \frown b$.

Lemma 2.3. If (a, b)M and $c \leq b$, then $(c \lor a, b)M$.

Lemma 2.4. Let $n=1, 2, \cdots$ and a_1, a_2, \cdots, a_n be given.

Then $(a_1, \dots, a_n) \perp$ if and only if $(a_i, a_{i+1} \cup \dots \cup a_n) \perp$ for $i=1, 2, \dots, n-1$.

Definition. We write $(a_1, \dots, a_n) \perp_s$ if $(a_{j_1}, a_{j_2}, \dots, a_{j_n}) \perp$ for every permutation $i \rightarrow j_i$ of the set of integers $[1, 2, \dots, n]$.

Lemma 2.5. A lattice of finite length is semi-modular if and only if the relation of modularity between pairs of elements of L is symmetric.

Lemma 2.6. Let L be a semi-modular lattice of finite length; then $(a_1, a_2, \dots, a_n) \perp$ implies $(a_1, a_2, \dots, a_n) \perp_s$.

Now we shall define relative independence; we shall write $(a, b) \perp_p$ if $a \frown b = p$, $(a, b)M^*$. Then we have the next theorem.

Theorem 2.1

(a) $(a, b) \perp_p$, $p \leq a' \leq a$, $p \leq b' \leq b$ imply $(a', b') \perp_p$.

(b) $(a, b) \perp_p$, $(c, a \smile b) \perp_q$, $q \leq a imply (c \smile a, b) \perp_p$.

(c) $(a, b) \perp_p$, $p \leq c \leq b$ imply $(c \lor a, b) \perp_c$.

(d) $(a_1, a_2, \cdots, a_n) \perp_p$ is equivalent to $(a_i, a_{i+1} \cup \cdots \cup a_n) \perp_p$, $i=1, 2, \cdots, n-1$.

Proof. Since (a, b)M is equivalent to $(a, b)M^*$ by Theorem 1.4, we can easily prove this theorem by means of techniques similar to those of Wilcox [1].

Now we shall study the relations between the B-covers and independent sets in a lattice L.

Theorem 2.2. In a lattice L, let $(a_1, a_2, \dots, a_n) \perp$; then $x = a_{k_1} \cup a_{k_2}$ $\cup \dots \cup a_{k_t}$ belongs to $B(a_i, a_{i+1} \cup \dots \cup a_n)$, where k_t is an integer such that $i \leq k_1 < k_2 < \dots < k_t \leq n$, $i = 1, 2, \dots, n-1$.

Proof. (1) In case $k_1 = i$, since $a_{k_2} \smile a_{k_3} \smile \cdots \smile a_{k_t} \le a_{i+1} \smile a_{i+2} \smile \cdots \smile a_n$, we have $(a_i \frown x) \smile ((a_{i+1} \smile a_{i+2} \smile \cdots \smile a_n) \frown x) = a_i \smile ((a_{i+1} \smile a_{i+2} \smile \cdots \smile a_n) \frown (a_i \smile a_{k_2} \smile \cdots \smile a_{k_t})) = a_i \smile (a_{k_2} \smile \cdots \smile a_{k_t}) \smile (a_i \frown (a_{i+1} \smile a_{i+2} \smile \cdots \smile a_n)) = a_i \smile (a_{k_2} \smile \cdots \smile a_{k_t}) = x$ by $(a_i, a_{i+1} \smile a_{i+2} \smile \cdots \smile a_n)M$ and $a_i \frown (a_{i+1} \smile a_{i+2} \smile \cdots \smile a_n) = 0$. Furthermore we have $(a_i \smile x) \frown (a_{i+1} \smile a_{i+2} \smile \cdots \smile a_n)$.

(2) In case $k_1 > i$, we have $a_i \cap x = 0$ since $a_i \cap x \le a_i \cap (a_{i+1} \cup \cdots \cup a_n) = 0$ by hypothesis. Hence we have $(a_i \cap x) \cup ((a_{i+1} \cup \cdots \cup a_n) \cap x) = x$ from $x \le a_{i+1} \cup \cdots \cup a_n$.

On the other hand, $(a_i \cup x) \frown (a_{i+1} \cup \cdots \cup a_n \cup x) = a_i \cup a_{k_1} \cup a_{k_2} \cup \cdots \cup a_{k_l}) \frown (a_{i+1} \cup \cdots \cup a_n) = x \cup (a_i \frown (a_{i+1} \cup \cdots \cup a_n)) = x$ by $(a_i, a_{i+1} \cup \cdots \cup a_n) \perp$.

Corollary 2.1. Let L be a finite semi-modular lattice. If $(a_1, a_2, \dots, a_n) \perp$, then $B(a_i, a_1 \cup a_2 \cup \dots \cup a_{i-1} \cup a_{i+1} \cup \dots \cup a_n)$ contains $x = a_{k_1} \cup a_{k_2} \cup \dots \cup a_{k_l}$, where k_i is an integer such that $1 \leq k_1 < k_2 < \dots < k_i \leq n$, $i=1, 2, \dots, n$.

Proof. This is proved from Lemma 2.6 and Theorem 2.2.

Theorem 2.3. Let $(a_1, a_2, \dots, a_n) \perp$. Then we have

(a) $B(a_1, a_2 \cup a_3 \cup \cdots \cup a_n) \supset B(a_2, a_3 \cup \cdots \cup a_n) \supset \cdots \supset B(a_{n-1}, a_n)$ in any lattice;

(b) $B(a_1, a_2 \cup a_3 \cup \cdots \cup a_n) \supset B(a_1, a_2)$, $B(a_1, a_3 \cup a_4 \cup \cdots \cup a_n)$ etc. in a finite semi-modular lattice.

Proof. (a) If we take x from $B(a_2, a_3 \cup \cdots \cup a_n)$, then we have $0 \leq x \leq a_2 \cup a_3 \cup \cdots \cup a_n$ by $(a_2, a_3 \cup \cdots \cup a_n) \perp$ and [4, Lemma 1]. Hence by $(a_1, a_2 \cup \cdots \cup a_n)M$ we have $(a_1 \cup x) \cap (a_2 \cup a_3 \cup \cdots \cup a_n) = x \cup (a_1 \cap (a_2 \cup a_3 \cup \cdots \cup a_n)) = x$ since $a_1 \cap (a_2 \cup \cdots \cup a_n) = 0$. Furthermore $(a_1 \cap x) \cup ((a_2 \cup a_3 \cup \cdots \cup a_n) \cap x) = (a_2 \cup a_3 \cup \cdots \cup a_n) \cap x = x$ from $a_1 \cap x \leq a_1 \cap (a_2 \cup \cdots \cup a_n) = 0$. Hence $B(a_1, a_2 \cup a_3 \cup \cdots \cup a_n)$ contains x, that is, $B(a_1, a_2 \cup \cdots \cup a_n) \supset B(a_2, a_3 \cup a_4 \cup \cdots \cup a_n)$. Similarly we can treat the other cases.

(b) If we take x from $B(a_1, a_3 \cup a_4 \cup \cdots \cup a_n)$, then we have $0 \leq x \leq a_1 \cup a_3 \cup a_4 \cup \cdots \cup a_n$ by [4, Lemma 1] and $(a_1, a_3 \cup \cdots \cup a_n) \perp$. Now by Lemma 2.6 we have $(a_2, a_1 \cup a_3 \cup \cdots \cup a_n) \perp$, and hence we have $(a_2 \cup a_3 \cup \cdots \cup a_n, a_1 \cup a_3 \cup \cdots \cup a_n)M$ by Lemma 2.3.

Hence we have $P \equiv (a_2 \smile a_3 \smile \cdots \smile a_n \smile x) \frown (a_1 \smile a_3 \smile \cdots \smile a_n) = x \smile$ $((a_1 \smile a_3 \smile \cdots \smile a_n) \frown (a_2 \smile a_3 \smile \cdots \smile a_n))$ from $(a_2 \smile a_3 \smile \cdots \smile a_n, a_1 \smile a_3 \smile \cdots \smile a_n)M$. But $(a_1 \smile a_3 \smile \cdots \smile a_n) \frown (a_2 \smile a_3 \smile \cdots \smile a_n) = a_3 \smile a_4 \smile \cdots \smile a_n$ from $(a_2, a_1 \smile a_3 \smile \cdots \smile a_n) \bot$. Hence $P = x \smile a_3 \smile a_4 \smile \cdots \smile a_n$.

Accordingly we have $(a_1 \smile x) \frown (a_2 \smile a_3 \smile \cdots \smile a_n \smile x) = (a_1 \smile x) \frown (a_2 \smile a_3 \smile \cdots \smile a_n \smile x) \frown (a_1 \smile a_3 \smile \cdots \smile a_n) = (a_1 \smile x) \frown P = (a_1 \smile x) \frown (a_3 \smile a_4 \smile \cdots$

On the other hand, we have $x = (a_1 \frown x) \cup ((a_3 \smile a_4 \smile \cdots \smile a_n) \frown x) \leq (a_1 \frown x) \cup ((a_2 \smile a_3 \smile \cdots \smile a_n) \frown x) \leq x$, and hence we have $(a_1 \frown x) \cup ((a_2 \smile a_3 \smile \cdots \smile a_n) \frown x) = x$. Hence x belongs to $B(a_1, a_2 \smile a_3 \smile \cdots \smile a_n)$, that is, $B(a_1, a_2 \smile a_3 \smile \cdots \smile a_n) \supset B(a_1, a_3 \smile a_4 \smile \cdots \multimap a_n)$. Similarly we can treat the other cases.

Theorem 2.4. Let $(a_1, a_2, \dots, a_n) \perp$. Then we have

(a) $J(a_1, a_2 \smile a_3 \smile \cdots \smile a_n) \supset J(a'_1, a'_2 \smile \cdots \smile a'_n), CJ(a_1, a_2 \smile a_3 \smile \cdots \smile a_n) \subset CJ(a'_1, a'_2 \smile \cdots \smile a'_n)$ in any lattice,

(b) $B(a_1, a_2 \cup a_3 \cup \cdots \cup a_n) \supset B(a'_1, a'_2 \cup \cdots \cup a'_n)$ in a semi-modular lattice of finite length, where $0 \leq a'_i \leq a_i$, $i=1, 2, \cdots, n$.

Proof. (a) If we take x from $J(a'_1, a'_2 \cup \cdots \cup a'_n)$, then we have $x = (a'_1 \cap x) \cup ((a'_2 \cup a'_3 \cup \cdots \cup a'_n) \cap x) \leq (a_1 \cap x) \cup ((a_2 \cup a_3 \cup \cdots \cup a_n) \cap x) \leq x$. Hence $(a_1 \cap x) \cup ((a_2 \cup a_3 \cup \cdots \cup a_n) \cap x) = x$, and x belongs to $J(a_1, a_2 \cup a_3 \cup \cdots \cup a_n)$. Thus we have $J(a_1, a_2 \cup a_3 \cup \cdots \cup a_n) \supset J(a'_1, a'_2 \cup \cdots \cup a'_n)$. Dually we have the other relation.

(b) If we take x from $B(a'_1, a'_2 \cup \cdots \cup a'_n)$, then we have $0 \leq x \leq a'_1 \cup a'_2 \cup \cdots \cup a'_n$ by [4, Lemma 1] and Lemma 2.1. Since $a_1 \cup x \leq a_1 \cup a'_2 \cup \cdots \cup a'_n$, $x \cup a_2 \cup a_3 \cup \cdots \cup a_n \leq a'_1 \cup a_2 \cup a_3 \cup \cdots \cup a_n$, we have $(a_1 \cup x) \cap (a_2 \cup a_3 \cup \cdots \cup a_n \cup x) = (a_1 \cup x) \cap (a_2 \cup a_3 \cup \cdots \cup a_n \cup x) \cap (a_1 \cup a'_2 \cup a'_3 \cup \cdots \cup a_n)$.

Now we have $(a_1 \cup a'_2 \cup a'_3 \cup \cdots \cup a'_n, a_2 \cup a_3 \cup \cdots \cup a_n)M$ by Lemma 2.3, and hence $(a_2 \cup a_3 \cup \cdots \cup a_n, a_1 \cup a'_2 \cup \cdots \cup a'_n)M$ by semi-modularity. Hence we have $(a_2 \cup a_3 \cup \cdots \cup a_n \cup x) \cap (a_1 \cup a'_2 \cup a'_3 \cup \cdots \cup a'_n) = x \cup ((a_2 \cup a_3 \cup \cdots \cup a_n) \cap (a_1 \cup a'_2 \cup \cdots \cup a'_n)) = x \cup a'_2 \cup a'_3 \cup \cdots \cup a'_n$ since $(a_2 \cup a_3 \cup \cdots \cup a_n) \cap (a_1 \cup a'_2 \cup \cdots \cup a'_n) = a'_2 \cup \cdots \cup a'_n$ by $(a_1, a_2 \cup a_3 \cup \cdots \cup a_n) \perp$. In the same way we have $(a_1 \cup x) \cap (a'_1 \cup a_2 \cup \cdots \cup a_n) = x \cup a'_1$ since $a_1 \cap (a'_1 \cup a_2 \cup \cdots \cup a_n) = a'_1$ by $(a_2 \cup a_3 \cup \cdots \cup a_n, a_1) \perp$.

Accordingly we have $(a_1 \smile x) \frown (a_2 \smile a_3 \smile \cdots \smile a_n \smile x) = (a_2 \smile a_3 \smile \cdots \smile a_n \smile x) \frown (a_1 \smile a'_2 \smile a'_3 \smile \cdots \smile a'_n) \frown (a_1 \smile x) \frown (a'_1 \smile a_2 \smile \cdots \smile a_n) = (a'_1 \smile x) \frown (x \smile a'_2 \smile a'_3 \smile \cdots \smile a'_n) = x$ by hypothesis. Furthermore, from the proof of (a), we have $(a_1 \frown x) \smile ((a_2 \smile a_3 \smile \cdots \smile a_n) \frown x) = x$. This completes the proof of (b).

Theorem 2.5. Let L be a lattice with 0, and if $CJ(a_i, a_{i+1} \cup \cdots \cup a_n) = L$ for $i=1, 2, \cdots, n-1$, then $(a_1, a_2, \cdots, a_n) \perp$.

Proof. (1) If we take x from L, then from $x \in CJ(a_i, a_{i+1} \cup \cdots \cup a_n)$ we have $(a_i \cup x) \frown (a_{i+1} \cup \cdots \cup a_n \cup x) = x$, hence $a_i \frown (a_{i+1} \cup \cdots \cup a_n) \le x$ for any $x \in L$. But L contains 0, then $a_i \frown (a_{i+1} \cup \cdots \cup a_n) = 0$.

(2) Take x' such that $x' \leq a_{i+1} \cup \cdots \cup a_n$ in L, then we have by hypothesis $x' = (a_i \cup x') \frown (a_{i+1} \cup \cdots \cup a_n \cup x') = (a_i \cup x') \frown (a_{i+1} \cup \cdots \cup a_n)$. On the other hand, we have $x' \cup (a_i \cap (a_{i+1} \cup \cdots \cup a_n)) = x'$ from $a_i \cap (a_{i+1} \cup \cdots \cup a_n) = 0$.

Accordingly we have $(a_i, a_{i+1} \cup \cdots \cup a_n)M$. From (1), (2) we have

466

No. 8] On B-covers and the Notion of Independence in Lattices

 $(a_1, a_2, \cdots, a_n) \perp$.

Definition. We write $(a, S) \perp$ if $(a, x) \perp$ (i.e. $a \frown x = 0$ and (a, x)M) for all $x \in S$.

Theorem 2.6. In a lattice, the following statements are equivalent. (a) $(a_1, a_2, a_3) \perp$,

(b) $(a_1, J(a_2, a_3)) \perp, (a_2, J(a_3, 0)) \perp$.

Proof. If $(a_1, a_2, a_3) \perp$, and if we take x from $J(a_2, a_3)$, then we have $a_1 \frown x = a_1 \frown ((a_2 \frown x) \smile (a_3 \frown x)) \leq a_1 \frown x \frown (a_2 \smile a_3) = 0$, and hence we have $a_1 \frown J(a_2, a_3) = 0$. Furthermore, since $0 \leq J(a_2, a_3) \leq a_2 \smile a_3$, we have $(a_1, J(a_2, a_3))M$ by Lemma 2.1. Thus we have $(a_1, J(a_2, a_3)) \perp$, similarly $(a_2, J(a_3, 0)) \perp$.

Conversely if $(a_1, J(a_2, a_3)) \perp$, and $(a_2, J(a_3, 0)) \perp$, then we have $(a_1, a_2 \smile a_3) \perp$ and $(a_2, a_3) \perp$ since $a_2 \smile a_3 \in J(a_2, a_3)$, $a_3 \in J(a_3, 0)$. Thus we have $(a_1, a_2, a_3) \perp$.

Theorem 2.7. In a lattice L with 0, let S be a subset of L with the greatest element, and if CJ(a, S)=L, then we have $(a, S)\perp$.

Proof. Let *m* be the greatest element of *S*, and if we take *x* from *L*, then we have $(a \cup x) \cap (m \cup x) = x$ from $x \in CJ(a, S)$. Hence we have $a \cap m \leq x$ for any $x \in L$. However *L* contains 0 and hence $a \cap m = 0$. Thus we have $a \cap S = 0$. If we take *x'* such that $x' \leq m$ in *L*, then from $CJ(a, m) \ni x'$, we have $x' = (a \cup x') \cap (m \cup x') = (a \cup x') \cap m$. On the other hand, since $a \cap m = 0$, we have $x' \cup (a \cap m) = x'$.

Hence $(a \smile x') \frown m = x' \smile (a \frown m)$, that is (a, m)M. Thus we have (a, S)M; this completes the proof.

References

- [1] L. R. Wilcox: Modularity in the theory of lattices, Ann. Math., 40 (1939).
- [2] G. Birkhoff: Lattice Theory, rev. ed., New York (1948).
- [3] L. M. Kelley: The geometry of normed lattice, Duke Math. J., 19 (1952).
- [4] Y. Matsushima: On the B-covers in lattices, Proc. Japan Acad., 32 (1956).
- [5] Y. Matsushima: The geometry of lattices by B-covers, Proc. Japan Acad., 33 (1957).