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106. On the Continuity of Norms

By Tsuyoshi AND6
Mathematical Institute, Hokkaid6 University, Sapporo

(Comm. by K. KUNU(;I, M.J.., Oct. 12, 1957)

Let R be a universally continuous) normed semi-ordered linear space.
A norm on R is said to be continuous, if a 02) implies inf

The importance of continuity of a norm is in the fact that every
norm-bounded linear functional on R is, roughly speaking, represented
by a continuous function on the proper space of R (cf. [3). In this
note, we consider some conditions of the continuity of norms on R.
We use the terminologies and notations in 4.

H. Nakano obtained the following three conditions of continuity:
Theorem A. If every norm-bounded linear functional on R is

continuous, the norm is continuous [4, Theorem 31.10.
Theorem B. If a norm on R is separable and semi-continuous,4

it is continuous 4, Theorem 30.27.
Theorem C. If a norm on R is uniformly monotone and com-

plete, it is continuous 4, Theorem 30.22.
In the sequel, the set of a type: {x; a_x_b} is called a segment.
We know that the semi-continuity implies the completeness of

segments [6, Theorem 3.3. We shall replace semi-continuity of a
norm by the completeness of segments of R in proving the continuity
of a norm.

A general condition for continuity is contained in
Lemma 1. A norm on R is continuous, if and only if every

segment of R is complete and the norm satisfies the condition:
( 1 p[p -0,5 t (, t- 1,2,...) implies lim Ii pa ii-o (a R).

Proof (cf. [3, Satz 14.3). If the norm is continuous, it is semi-
continuous, hence every segment is complete. For a e R and [p _p-0,
,/ (,, tt-l,2,...), we have (o)-lim [p_a-O,6 hence by continuity

1) Universal continuity means that for any az0 ( eA) there exists (3 az.
A

2) aa means that aa+ (=1,2,...) and (3 a-a.

3) A linear functional o R is said to be continuous (resp. universally continu-
ous), if for any a0 (resp. a $ 0) inf I(a)]=0 (resp. i.nf I(az)l=0).

=1 A 1,2,... A
4) A norm is said to be semi-continuous, if 0 av oo a implies sup ]] a

-----I ----1,2,

5) EP] is a projection operator to the normal manifold generated by p:

U (vlplr.,a) for OaeR.
6) (o)-lim means order-limit.
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lim i] pa ]]--0. Conversely let every segment of R be complete and

the norm satisfy the condition (1). To see continuity, it is sufficient
to prove that p0 implies inf ]ipall-O. The condition (1)

-----1 -12

implies that {pa}% is a Cauchy sequence, because, if it is not so,
there exists a subsequence {[p]}% such that ii ([P] [P.+])a I! >- >0
(/--1,2,...), contradicting the condition (1). The completeness of
{x;ixl<_a and [4, Theorem 30.1] imply lim il [p]aii--O. Q.E.D.

From Lemma 1, we obtain a slightly general form of Theorem B.
Theorem 1. If every segment of R is complete and separable,

the norm is continuous.
The proof is almost the same as that of Theorem B.
Next we shall weaken the condition of uniform monotoneness in

Theorem C. Firstly we recall some definitions for comparison.
A norm on R is said to be uniformly monotone, if for any >0

there exists 8-(e) > 0 such that
(2) ab--O, iiali--1, ilbii>_s implies
We define a weaker type of monotoneness: a norm on R is said to
be equally monotone, if there exists 0 such that
(3) ab-O, ila]]-]]b]i-1 implies
This definition is equivalent to the following:
(3’) ab--O implies ]]a-bli_>Min {]Jail, lib il} +$.Max [lla
The dual type of uniform monotoneness is uniform flatness. A norm on
R is said to be uniformly fiat, if for any e0 there exists
such that
(4) ab--O, l]al]-]]b]]--I implies i{a-ebli_l-e for
As a weaker type we define: a norm on R is said to be equally fiat,
if there exists >0 such that
(5) ab--O, i]ail-]]b]l--1 implies

Duality between uniform monotoneness and uniform flatness is
known (cf. 3, 15).

Lemma 2. Equal monotoneness and equal, flatness are of dual
type.

Proof. Though this is a consequence of the theory of indicatrices
in 3, 16J, we give a direct proof. Suppose first that the norm on

R is equally monotone. For ,beR",s’b-O, ]ll]--]]bl]--I there

exists O<_aR such that ita[i-1, II-bil--e<_(-b)(a). Since, as

7) Recently Mr. T. Shimogaki obtained a weaker condition: On the norms by
uniformly finite modulars, Proc. Japan Acad., 33, 304-309 (1957). Also Mr. S. Koshi
considered equal monotoneness in studying another problem: Modulars on semi-ordered
linear spaces (II), Jour. Fac. Sci. Hokkaid5 Univ., Ser. I, 13, 166-200 (1957).

8) R" denotes the Banach’s associated space of R.
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easily shown, (-b)(a)--sup((x)-b(y)), there exist o, YoeR such
xy----O
x+y=a

that x0Y0=0, xo/yo=a li+b[I--2<-(Xo)+b(yo). If

by (3’)llXol]<_llXo+yoli-llyoll<_l-/2, so

--<il x0 il +!1 Y0 i1--2--$/2. Since is arbitrary, the norm on R" is equally
fiat by definition. Conversely suppose the norm on R to be equally

fiat. For ,bR", b-O, IIll-Iibli-1 there exist O<_a,bR such

that ab-O, llall-llbil-1, (a)>l-z, b(b)>X-z. Since

( a+b ) >. 2--2 Since is arbitrary, theby (5), [[+b[[(+b) .][a+b[[ 2--
norm on R" is equally monotone by definition. Q.E.D.

Theorem 2. If a norm on R is equally monotone and every
segment of R is complete, the norm is continuous.

The proof is similar to that of [3, Satz 14.3].
In the theory of Banach spaces, some conditions on types of norms

are known. A norm on R is said to be strictly convex, if for any
e>0 and a, beR, Ilall-l]b]]-l, I]a-bll_z, there exists $-$(e,a,b)>0
such that

(6) [[ a+b [[_2--.
If is independent of b, the norm is said to be locally uniformly
convex. Further if depends only on , the norm is said to be uni-
formly convex. The dual type of convexity is evenness (-differenti-
ability of norms). A norm on R is said to be even, if for any e>0 and
for a, b e R, ]] a ][- [[ b [[- 1 there exists t-(e, a, b) > 0 such that

(7) ]]a-ktb]]q-]]a-$bll<_2q-$e for

If depends only on e, the norm is said to be uniformly even.
Duality between convexity and evenness is studied in 2, 5.
Theorem 3. If a norm on R is uniformly convex (or uniformly

even), it is equally monotone and equally fiat.
Proof. Let the norm on R be uniformly convex. Then it is uni-

formly monotone 4, Theorem 30.26, consequently equally monotone.
As to equal flatness, ab--O, [[a[[-[[b []-1 implies [[a+b[[_2--,
where $--(1) is given in (6), because ]]a--bli-i] a-b]]_>l. Since
uniform convexity and uniform evenness are of dual type (cf. 5,

76-77), the assertion for the case of uniform evenness follows from
Lemma 2. Q.E.D.

We shall consider the relation between convexity and continuity.
Theorem 4. If a norm on R is locally uniformly convex and

every segment of R is complete, then the norm is continuous.

Proof. To prove the continuity, it is sufficient to show that



432 T. AND5 [Vol. 33,

O_aa, Iiaii--1 implies limlla--all--0. Imbedding R into R ) in

a natural way, let a o b in " (b may be different from a). Putting

c=a+(a--b) (,=1,2, ), we obtain ca in ". If we shall prove

lim]c--a[-0, then {a} is a Cauchy sequence, consequently the

completeness of the segment and [4, Theorem 30.1] imply lim a--a-O.
Suppose, to the contrary, that c--a >>0 (--1,2,...). By the

definition of locally uniform convexity, there exists $>0 such that

xR, ][a--x>, 1--]xl implies [a+x[2--.
Since the unit sphere of R is dense in that of " by the topology

a(", "),,0) there exist a, R, A (,- 1,2,...), where A is a directed

set, such that [{a,,]]-]c][, lim(a,.0-(c)(,--1,2,..-) for every
A

We can easily see lira

[[ e+ [I. Since e implies lira [[ e [[-[[ [-1 by he semi-eonU-

nuiy o he norm on ", here exists ;0 such ha [ z, [-[ e[l--
(;;0). For hese ;, we have lim []z,[[--, hence

A
contradicting lim [[ +e [[-[[ ]]-. ..D.

In the above theorem we can not replace locally uniform convexity
by sriet convexity.

0n he oher hand, by Theorem A and 4, Theorem 8.11
necessary and sueient eondiUon for he eonUnuiy of a norm is that
every segmen is eompaet (or sequentially eomplee) by he opology

A bounded linear uneUonal is said to be oed, if here
exists R such ha

If he uni sphere of R is eompae by he opology (R, ’), he norm

is eonUnuous and every is supported. We now combine his
ropery wih a eondiUon of monooneness. A norm on R is said to
be monotone, if

(0) 0<b implies [[
Theorem 5. If orm o

9) R denotes the totality of all universally continuous linear functionals on R,
nd we put R -RR

10) (R, S) denotes the weak topology on R defiued by all elements of .
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Proof. For Eto 0, considering EP] as a projection operator

[p on (cf. [4, 18), put P= [p. For 0_<eR P-,

there exists 0a e R, [ a ]]- 1, (a) [[ [, because is supported by
assumption. But since P(x)-lim([p]x) for every x eR, ([pa)-

P([pa)=(a) (-1,2,...), namely ([pa)-[[]] (=1,2,...). If
0, monotoneness of the norm implies pa=a (-1,2,...), hence

a- pa-O, this is a contradiction. So we have P=0. Thus for any
=1

[p $ 0 we hav lim 5(px) 0, namely every e R is continuous.
=1

The assertion follows from Theorem A. Q.E.D.
When we consider normed semi-ordered linear spaces, the assump-

tion of semi-regularity (that is, separativeness of the topology a(R, "))
is natural.

Theorem 6. Let R be semi-regular. If every is supported,
the norm is continuous.

Proof. Without loss of generality, we may assume that there

exists a complete element) 0<eR", ][[--1 For
b--0 (if it exists), there exists by assumption heR such that

[a]]--l, (--b)(a)-]]--b]]. It follows that (a-)+b(a+)-O, because

b--0 implies ][ +b ][- ]] --b ][ so (+b)(a[)-(--b)(a), hence

(+b)([a[)--(--b)(a)-2{(a:)+b(a+)}-0. Since is complete, we

have a--0, consequently b(a)-O. This shows that ] --b ]-[] ][--1,
contradicting ]--b[]b]]=2. Thus for any eR we have [=,
that is, is continuous. The assertion follows from Theorem A.

Q.E.D.
Now turning our attention to evenness, we obtain
Theorem 7. Let every segment of R be complete. If there exists

> 0 such that

(10) ]][a[+$a][+[]a[--a]2+ for every ]]a[[l,
then the norm is continuous.

Proof. By Lemma 2 and Theorem 2, it is sufficient to prove the

equal flatness of the norm on For , b e R =0,
and for any e0, there exists aR such that []a[[--1,
(--b)(a)+e. So we have

11) e R is said to be complete, if I-d a ])=0 implies a=0.
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consequently by (10), !1-!1_< 2++(1+)e Since s is arbitrary,

the norm on is equally flat. Q.E.D.
The condition of evenness is more convenient than that of convexity,

as is seen in the following:
Theorem 8. If a norm on R is even and every segment of R

is complete, the norm is continuous.
Proof. Suppose the contrary. There exist by Lemma 1 a eR

and {p}l such that pJp-O, , U pJa-a, ilpall>_O

(, --1,2,...) for some e> 0. The subspace: {x; x]

_
Ea], p]x-p]a

(,- 1,2,...) for some $, sup $ < is, as a normed linear space,
----12,

isomorphic to (m), the space of all bounded sequences of real numbers
with the usual norm, under the correspondence x - ($) for the above
x and ($), because we have sup ]$lilali>_ilxti>_e sup I$l. But

=I,2, "-I,2,...

M.M. Day 1 proved that the space (m) admits no equivalent norm
which is even. Q.E.D.

Finally I wish to express my thanks to Professor H. Nakano for
his kind advice.

References

[1] M. M. Day: Strict convexity and smoothness of normed spaces, Trans. Amer.
Math. Soc., 78, 516-528 (1955).

[2 A. R. Lovaglia: Locally uniformly coavex Banach spaces, Trans. Amer. Math.
Soc., 78, 225-238 (1955).

[3J H. Nakano: Stetige lineare Funktioaale auf dem teilweisegeordneten Modul,
Jour. Fac. Sci. Imp. Univ. Tokyo, 4, 201-382 (1942).

[4] ---: Modulared Semi-ordered Linear Spaces, Tokyo (1950).
[5] --: Topology and Linear Topological Spaces, Tokyo (1951).
[6] ---: Linear topologies on semi-ordered linear spaces, Jour. Fac. Sci. Hokkaid5

Univ., Ser. I, 12, 87-104 (1953).


