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31. Some Transformation Equations in the Theory
of Partitions

By Sh6 ISEK
Depsrment of Mathematics, Defense Academy, Yokosuka, Japan

(Comm. by Z. SUETUN, M.J.., March 12, 1958)

In a recent paper 2 the author has obtained the following func-
tional equation"

{((l+a)z-i)+((l+ 1--a)z+iB)]+-z(a--a+ 1/6)
/----0

1 ) =, [((l+)/z+ia)+((l+l_)/z_io)+(._+l/6)
l=O

+2ri(-- 1/2)(/9-- 1/2),
where 01, 0</<1 (or 0<<1, 01), z is a complex number
with 9(z)>0, and (t) denotes --log(1-e-=). This formula may be
expected to have some applications in the theory of partitions. Indeed,
the famous transformation formula for the Dedekind modular function
v(r) can be easily derived from (1) (see

In the present paper we shall note that formula (1) will also yield
a transformation equation of the generating function for p(n; a, M),
the number of partitions of a positive integer n into positive summands
of the form Ml+/-a (1-0, 1, 2,...), where a and M are integers such
that M:>2, O<a<M, (a,M)--l.

This partition function has been treated for special values of M
by several writers; namely, the case M=2 by Hua [1, the case M=6
by Niven [5J, the case M=5 by Lehner [3J and generally the case
M=p, where p is a prime greater than 3, by Livingood [4J; each
resulting in a convergent series expansion for the partition function,
by using the Farey-dissection method first introduced by Hardy and
Ramanujan and later improved by Kloosterman and Rademacher.

In the use of the Farey-dissection method it is important to find
the transformation equation to determine the asymptotic behavior of
the generating function near its singularity at each ’rational point’
on the unit circle.

The generating function of p(n; a, M) is clearly found to be, for
M3,

F(x; a, M)--l+ , p(n; a, M) x g(1--x/)-(1--x/’-)-=1 /=0

But for M=2, i.e. for partitions into odd parts (or equivalently un-
equal parts), we have
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2 p(n; 1, 2)--p(n; 1, 4), F(x; 1, 2)-- II (1--x"/l)-l--F(x; 1, 4).
l=O

Therefore it suffices to consider the cases M3 in what follows.
The desired transformation equation for F(x; a, M) will be obtained,

by some elementary algebraic manipulation, from formula (1), and it
is unnecessary to make any use of the theory of elliptic modular
functions.

Our main theorem may be stated as follows:
Theorem 1.1 Let z be a complex number with (z)O, and h, k

be coprime integers with kl. Denote by D and K the g.c.m, and
the 1.c.m. of k and M, respectively. Put k--kiD, M:mD, so that
(k, m)-l, and choose any integers , satisfying 7k--m--l. Let,

Further,then, H be any solution of the congruence hH=- (mod k).
set

x--exp (2rih/k--2rz/k), -exp (2riH/k--2r/Kz),

F(; b, D, e)- (--,+)-(--’+-)-,
l=0

where
b-ha--D[ha/D, t--exp(--2riay/M), -exp(2riay/M),

[t denoting the greatest integer not exceeding t.
Then, if M3, we have the equation

3 F(x; a, M)--o(h, k) exp {(r/6kM)(B/z--Az)}F(; b, D, p)
with the notations

o(h, k)--exp {2ri6(h, k)}, a(h, k)-- (t/g--1/2)(ht/k--[ht/k--l/2),
where tt runs over the integers a,a-M,a-2M,...,a+(k--l)M; and

A--6a2--6Ma+M., B--6b--6Db+D.
The case D--1 of Theorem 1 can also be expressed in a different

form.
Theorem 2. With the same notations as in Theorem 1, we have,

when (k, M)--I, M3, the following equation:

F(x; a, M)--1/2)(h, k) csc (r/M) exp {(r/6kM)(1/z--Az)}
( 4 )

(1--P)-(1--)-,
l=l

where is an integer defined by $k-------a (rood M) (O<$<M); and

x(h, k)--exp {2riT(h, k)}, r(h, k)---,
with the abbreviation

((t))-- O, if t is an integer,
[ t-- [t 1/2, otherwise.

Further we have p:exp (--2ri$/M), and H is also determined by the
congruence MhH 1 (mod k).)

1) A detailed proof of Theorem 1 will be published in a future paper.
2) This congruence was employed for the definition of H by Lehner [_3] and

Livingood [4], where they wrote H’ for our H and H for our Mh.
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Proof. First, since (h, k)-l, ht/t is integer if and only if
that is, if and only if /-$k as is seen from /-----a (mod M) and
<Mk. Thus we get, noting that K----Mk,

a(h, k) =(h, k)+(k/g-- 1/2)(-- 1/2)-- -(h, k)+(1/2--/M)/2.
On the other hand, D-1 implies b-0 and also B--l, as is obvious
from their definitions in Theorem 1. Hence formula (3)is written in
the form

F(x; a, M)--i exp (--ri$/M)x(h, k) exp {(r/6kM)(1/z--Az)}
5 )

X (l--p)- : (1--p)-(1--)-.
Moreover, since /k=---1 (mod M), we have aTk-a (mod M), which yields
aTk-$lc (mod M), so that a7=---$ (mod M) by virtue of (k, M)--1. Hence

p=exp (-- 2rialM)--exp (-- 2-i$1M),
and also
i exp (--ri$/M)(1--p)-1-i exp (--ri$lM)(2i)- exp (ri$/M) csc (r$/M)

1/2 csc (r$/M).
Thus (4) follows immediately from (5).

Finally, the congruence hH =--- (mod k) is equivalent to MhH- 1
(mod k) since M 1 (mod k).

This completes the proof of Theorem 2.
We remark that h/k is always non-integral for the case D> 1,

since the congruence $k----a (mod M) has no solutions in $ inasmuch as
we have assumed (a, M)--I above. Hence, observing that 0<
we may write (h,k)-((t/g))((ht/k)) for D>I.

We shall now discuss the special case a-l, M=4. This case is
of particular interest since it is equivalent to the case M=2, as has
been shown in (2).

We consider three cases separately according as (k, 4)-4 or 2 or 1.
Case (i): (k, 4)-4. With the notations in Theorem 1, we have

D--4, K=k, k--k/4, m--l; /k/4 ; --1, and we may choose /-0,
---1, so that the congruence for H becomes hH--l(mod k). We
get further

-exp(2riH/k--2’/kz), b--1 or 3, p----l,

F(; b, 4, 1)-- II (1--4/)-(1--4/)-1--F(; 1, 4);
/=0

a(h, k)--, ((tt/k))((ht/k)) (t- 1, 5, 9,..., k-- 3);
and

A--B-- --2.
Case (ii): (k, 4)-2. We have D-2, K--2k, k--k/2, m--2;

/k/2--2-1, and we may choose 7-1, --(k/2--1)/2. Then
--exp (2riH/k--r/kz), hH=(k/2--1)/2 (mod k),
5-1, p-exp(--ri/2)--i, -i,
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and

F(; 1, 2,-i)- H (l+iu/)-(1--i/)-l----0

n (1--(--)/)---F(--; 1, 4);

a(h, k)= ((/2k))((ht/k)) (/-1, 5, 9,..., 2k--3);

A=B-- --2.
Now let H’ be any solution of hH’------1 (mod k). Then since

h(2H+k/2)----k/2-1+hk/2- 1+k(h+ 1)/2---- 1 (mod k),
we have H’----2H+k/2 (mod k). Therefore --"--exp (2riH’/k--2r/kz).

Case (iii): (k, 4)-1. By Theorem 2, we have
F(x; 1, 4)=1/2 x(h, k) csc (r$/4) exp {(r/24k)(1/z+2z)}

x n (1--)-’(--)-.
l=l

Here $ is defined by Sk----1 (mod4) (0<<4), which yields

$= { 1, if k---- 1 (mod 4),
3, if k-----3 (mod 4).

Hence

and

p--exp (- ri$/2)-
i,

if k---- 1 (mod 4),
if k=3 (mod 4),

Further
for $-- 1, 3.

H (l-p’)-’(i-m’)-’- II (i+")-’
=I =i

n (1--(5y"+) 1/F(; 1, ),

where =exp(2iHl--12kz), and H is determined by 4hH--I
(mod k). Now let H’ be any solution of 2hH’--I (mod k). Then
H’2H (mod k), and we have 5 exp (2iH’/k--/kz). Moreover,
r(h, k)- ((14k))((h/k)) (-1, 5, 9,. ., 4k--3).

The above discussion establishes the following
Theorem 3. The generating function F(x) for the number of

partitions into odd (or unequal) parts satisfies the equation
6 ) F(x)=(h, k) exp {(/12k)(z--1/z)}F()

for k even, where
x--exp(2ih/k--2z/k), =exp (2iH/k--2/kz),
hH 1 (mod k), (h, k)--exp {2ia(h, k)},

((/k))((h/k)) (,--1, 5, 9,..., k--3), if 4]k,k)- ((/2k))((h/k)) (--1, 5, 9, ,2k-3), if 4k;
and the equation

( 7 ) F(x)-- i x(h, k) exp {(/12k)(z+ 1/2z)}/F(x’)

for k odd, where
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x--exp (2rih/k--2’z/k), x’=exp (2riH’/k--’/kz),
2hH’=--I (mod k), x(h, k)=exp {2riT(h, k)},
(h, k)--, ((/4k))((ht/k)) (=1, 5, 9,. ., 4k--3).

It is easily verified that the transformation equations (6), (7) are
essentially the same ones as in Hua’s paper [1, apart from the formulas
for a(h, k) and r(h, k), which are complicated in Hua’s results, whereas
in our case they are defined by analogues of Dedekind sums.

In closing this note we mention that a convergent series representa-
tion for p(n; a, M), where M assumes general values, may be obtained
by using the Farey-dissection method and applying Theorem 1; it is
hoped to publish a full account of the result in due course.
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