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Relations between Solutions of Parabolic and
Elliptic Differential Equations

By Haruo MURAKAMI
Kobe University

(Comm. by K. KUNUGI, M.ff.A., June 12, 1958)

In this note we shall show that under some conditions the solution
u(x, t) of

u u f(x, t, u)
3x t

converges to a solution v(x) of
V
--x--f(x, v)

as t -->.
Let G be a domain which is regular for Laplace’s equation ) in

the m-dimensional Euclidean space, and let F be the boundary of G.
Set D=G(O, ) and B=F [0, ). We remark that D is regular
for the heat equation ) and therefore regular for the equation (E)
below.)

Now, let w and be the generalized heat operator ) and the
generalized Laplacian operator respectively, i.e.

x cos 0 (log cosec #)WJd. d_d#
and

u(x)-- lim {u($)--u(x)}Jdcp...dg_,
r+o ti.-9

where in the first expression, (, T)-(I,.", , T) with

-x,+2rV sin 01/ig cosec t (i= 1,. ., m)
1) This means that the 1st boundary value problem of Laplace’s equation for G

is always solvable for any continuous data on F.
2) "Regular for the heat equation" means that the 1st boundary value problem

of the heat equation for D is always solvable for any continuous data on GB. D
is regular for the heat equation if and only if G is regular for Laplace’s equation.
For the proof, see "On the regularity of domains for parabolic equations ", Proc.
Japan Acad., 34, 347-348 (1958).

3) It was proved in [1, p. 626] that a p-domain is regular for (El) if and only if
it is regular for the heat equation.

4) See [1, p. 627], in which we used the symbol [] instead of ,
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--t--r sin0

and in the second expression, ($)-[$,..., $) with-x+rw (i- 1,..., m).
In both cases,

qT--COS cfl COS c,o CO Cflm_. COS Cflm_

.--cos o cos o. cos o,_. sin
a--cos o cos q2 sin

_--cos cp sin

(-----<(p, i--X,.., m--2;sin (p
2

and

(i)

and

J-det

These operators have the following properties:
If u(x, t) and u(x) are functions in the class C,

v (, )- (, ) (, )
=,i 3x 3t

/u(x) , u(x)
=i

(ii) If we operate w to a function u(x) which does not depend on
t, we have

u(x) /u(x).
Consider the following two equations:

E wu-f(x, t, u) x G, tO,

E Av-f(x, v) x e G,
where f(x, t, u) and f(x, v) are continuous functions on D(--, )
and GX (- , ) respectively, quasi-bounded ) with respect to u and
v and non-decreasing with respect to u and v.

Let g(x) be a continuous function on GF and (, t) be a con-
tinuous function on B and moreover (, 0)-g(5) for 5 F. Let u(x, t)
be a solution ) of (E) which is continuous on DGB and which
satisfies the boundary condition u(x, 0)- g(x) (x G) and u(2, t)-(5, t)
(xeF, t20). Assume that (5, t) converges uniformly on [’ to a

5) We say that a function f(p, q) defined on EF is quasi-bounded with respect
to q if f(p, q) is bounded on E K, where K is any compact set in F.

6) 7) These solutions u(x, t) and v(x) do exist. See [lJ and [2].
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function p() as -. (Then p(5) is again a continuous function
on F.) Let v() be a solution of (E2) which is continuous on GI
and satisfies v(5)-p() on F.

Finally assume that, for any U>O, f(x, , u)converges uniformly

to f(x,u) on the set {(x,u); xG, u U} as .
Under hese assumptions, u(, ) converges uniformly to v(x) on

GF as
Proof. For any e>0, there exists T>0 such that ](,t)--()l

< for tT. Set M0-max{g(x)]; xGF}, M-max{](,t)];
xeF, 0tT} and M2=max{]v(x)]; xGF}. By the assumption
above we can find a constant T2>0 such that

If(z, t, v(z))--f(, v()) <
for xG, tT2. Set Ms-sup{] f(x,t, v(z))--f(x, v(x)) ]; xG, 0tT2}.
Let (x) be a solution of =-1 such that (x) is continuous on
GF and vanishes on F. Then there exists a constant such that
0(z), hence we can take a constant a>0 such that --l+a(l+)
< _.1 Finally, let M>0 be a constant such that ( ) Me-rMs,

2 2
(ii) Me-r,>M+M2 and (iii) M>Mo+M2.

Consider the function Me-’+e. Then, we have
1(, t)--()] < Me-*+ x F, t O.

Now, let v(x, t) be a solution of the equation:

Me-_

and suppose that v(x,t) is continuous on GF and admits the
boundary value Me-+e on F. Then we have

v(x, t) Me-+e++(x)(Me-"’+s)
ie-(l+(x))+e(l+(x))

Set V(x, t)-v(x)+v(x, t), then

w v(x, t)= t) t)

f(x, v(x))+(--ie---e)+ale-"(l+(x))

Now, for u > V(x, t) we have

f(x, t, u) w V(x, t) f(x, t, v(x)) f(x, v(x)) +z--ie-’(- 1+a(1+(x))).
Since f(x, t, v(x))- f(x, v(x))>--M and --Me-(--1-a(l+(x)))>M
for 0gtg T, we have

f(x, t, u)-w V(x, t)>0
for OgtgT. For tT, since f(x,t, v(x))--f(x, v(x))>--e, we have

8) It is sufficient for our proof to assume that f(x, t, v(x)) converges uniformly

to f(, v(z)) on G as --,.
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f(x, t, u)-w v(x, t)>0.
Consequently, if u> V(x, t), x e G and t0, then we obtain

f(x, t, u)- w V(x, t)> o.
Next, on the boundary B, since o(, t)_< cp() --Me-+e, we have

u(, t)--(, t)_()+(Me-t--)(l+())-- V(, t).
On G, the rest part of the boundary of D,

u(x, O)-g(x)<_Mo<M- M._ v(x)+ (1 +(x))(M+z)
implies V(x, O)>_u(x, 0). Hence, on the whole boundary of D, we have

V(x, t)>_u(x, t).
Therefore by the comparison theorem,) we have

u(x, t) <_ (x, t)-v(x)+v(x, t)
on D’-GB. Similarly we have v(x)--v(x,t)_u(x, t), and consequently

u(x, t)-v(x) l<_ v(x, t)
on DGB.

Since v(x,t)--(Me-+s)(l+(x)), there exists a constant T>0
such that v(x, t) !<_ 2(1+ )s for x e GF and t>_ T. Thus u(x, t)
converges uniformly to v(x) on GF. This completes the proof.

Corollar 1. Assume that moreover f(x,t, 0)=---0. Then, the
solution of (E) which admits g(x) on G (where g()--0 for e F)and
which vanishes on B converges uniformly to zero on GF.

This shows that the solution is asymptotically stable.
Corollar 2. If o(, t) converges uniformly to o() on F, the

solution of the heat equation which admits (, t) on B and which
admits g(x) on G converges uniformly to the solution of Laplace’s
equation which admits () on F.

This means that the solution of the heat equation converges to
the steady state solution.)
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