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(Comm. by K. SHODA, M.J.A., NOV. 12, 1958)

In the present note we shall study the cohomology groups of the
ring of all p-integers of a p-adic field.

Let K be a P-adic number field and let L be a finite separable
extension field over K. More generally, let K be a complete field by
a discrete valuation and let L be a finite separable extension field
over K with separable residue class field. Let R and A be the rings
of all P-integers of K and L, respectively. Then // has a minimal
basis over R, i.e.

,I-= R-4- Rt?-4- -{-R ,
where 1, t?,..., t?- are linearly independent over R [1. Let f(x)=O
be the equation of 0 in R.

We shall consider A as an algebra over R and construct a
projective resolution over d. which is suitable for our purpose.

Let
f(x).=(x--O)g(x), g(x)--x-l-{ (-,b_2,

be the decomposition of f(x) in //. We put
g(t?) b

in A=A)A.
Lemma
Let ,2)l* be any element in 4. Then
(E 2 (R) )(a@- @) o if and onty if E @."g,(O);
(2).g(a):O if and only if

Proof. Sinee we have a ring isomorphism

a@1-1@a x-a mod (f(x)),
g(8) g() rood (f(x)),

we shall calculate in the right hand side. We take polynomials of
degree less than n as the uniquely determined representatives of the
classes mod f(x). If (x--O)h(x)O mod f(x), deg h(x)n--1, then
dividing h(x) by g(x) we have h(x)=ag(x)Ws(x), deg s(x)n--2; so
s(x)(x--O)O mod f(x). Therefore s(x)=O, h(x)=ag(x). Similarly, if
g(x)h(x)O rood f(x), then h(x)=(x--8)ho(x).

Lemma
1) Since A is commutative, A*-A and we shall drop the sign ,.
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The kernel of the augmentation "Ae->A, (2()/)=2! is Ae(Ol
-(R)).

Proof. Since A is commutative, e is a ring homomorphism. So
that A(O(R) 1--10) is contained in the kernel of . Conversely, if

0 0 0(c, 00--0, then from ,
=c,(O@ 1)(1 O)-- c(O’ 1)[0 @ 1 +(10--0 1)}=v(0@){0 +(1 @x-+o@x-+ +x-’@ 1)( @0-0@ )}
=c0+1+c(01)(10-+. +0-1)(1@0--01)
we have e(( c0+)1)-- c0+--0, whieh proves the assertion.

Now we consider the following A-resolution over A:

d>A d,A dA d>AA0
where e" AA, (

d(Zz)-( )a(0).
This is A-free and, by the above lemma, aeyelie.

To calculate H(A,A) and H(A,A) for any A module A, we
consider the complex..,

Hom(, A) Hom(, A) ’ Hom(, A)

where and 3 are induced homomorphisms of d. Considering the
isomorphisms

Hom(A, A) A, A@A A,
we may translate 3 and 3 into the endomorphisms of A

3+(a)-aO-Oa(-*O.a), +(a)-Oa-ao,
()- bXaO(-g:(O), a), (a)-

for aeA. Thus we have
Theorem

H+(, A) Ag(/A, H+(, A)Ao/A,
H+(, A) A</A*, H+,(a, A) A,/A:’

for rO, where
A={aA a-O}, A--{a aA}

for any two sided A module A (considered as left A module).
Corollary

H (A, A) = H’(A, A)
H,+.(A, A) " H,(A, A)

for
Theorem
If Oa--aO for any a in A, then

H"+(, A) - H.+(, A) -- A,()H’+(A, A) H.,. + (A, A) A]A’’’.
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Proof. In this case g(O).a--g(O)a and
g(O)-(0--0’). (0--0"- 1)_ f’(O).

The corollary of this note may be extended to the global case.
Let K and L be the algebraic number fields, R and A the rings of
all integers of K and L respectively. Then for any A-finitely genera-
ted module A we have

H/(A, A) H,(./I, A)
H (A, A) Hn(A, A)

for nl. We may prove it by reducing it to the 0-component and by
using the above corollary.
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