139. On the Cohomology Groups of p-adic Number Fields

By Hideo Kuniyoshi
Mathematical Institute, Tôhoku University
(Comm. by K. Shoda, m.J.A., Nov. 12, 1958)

In the present note we shall study the cohomology groups of the ring of all \mathfrak{p}-integers of a \mathfrak{p}-adic field.

Let K be a \mathfrak{p}-adic number field and let L be a finite separable extension field over K. More generally, let K be a complete field by a discrete valuation and let L be a finite separable extension field over K with separable residue class field. Let R and Λ be the rings of all \mathfrak{p}-integers of K and L, respectively. Then Λ has a minimal basis over R, i.e.

$$
\Lambda=R+R \theta+\cdots+R \theta^{n-1}
$$

where $1, \theta, \cdots, \theta^{n-1}$ are linearly independent over $R[1]$. Let $f(x)=0$ be the equation of θ in R.

We shall consider Λ as an algebra over R and construct a Λ^{e} projective resolution over Λ which is suitable for our purpose.

Let

$$
f(x)=(x-\theta) g(x), \quad g(x)=x^{n-1}+\left(\sum_{j} b_{n-2, j} \theta^{j}\right) x^{n-2}+\cdots
$$

be the decomposition of $f(x)$ in Λ. We put

$$
\begin{aligned}
g_{e}(\theta) & =\sum_{i, j} b_{i j} \theta^{i} \otimes \theta^{j} \\
\Delta \theta & =\theta \otimes 1-1 \otimes \theta
\end{aligned}
$$

in $\Lambda^{e}=\Lambda \otimes_{R} \Lambda$.
Lemma
Let $\sum \lambda \otimes \mu$ be any element in Λ^{e}. Then

$$
\left(\sum \lambda \otimes \mu\right)(\theta \otimes 1-1 \otimes \theta)=0 \text { if and only if } \sum \lambda \otimes \mu \in \Lambda^{e} \cdot g_{e}(\theta)
$$

$\left(\sum \lambda \otimes \mu\right) \cdot g_{e}(\theta)=0$ if and only if $\sum \lambda \otimes \mu \in \Lambda^{e}(\theta \otimes 1-1 \otimes \theta)$.
Proof. Since we have a ring isomorphism

$$
\begin{gathered}
\Lambda \otimes_{R} \Lambda \cong \Lambda[x] /(f(x)), \\
\theta \otimes 1-1 \otimes \theta \leftrightarrow x-\theta \bmod (f(x)), \\
g_{e}(\theta) \leftrightarrow g(x) \bmod (f(x)),
\end{gathered}
$$

we shall calculate in the right hand side. We take polynomials of degree less than n as the uniquely determined representatives of the classes $\bmod f(x)$. If $(x-\theta) h(x) \equiv 0 \bmod f(x), \operatorname{deg} h(x) \leqq n-1$, then dividing $h(x)$ by $g(x)$ we have $h(x)=\alpha g(x)+s(x)$, deg $s(x) \leqq n-2$; so $s(x)(x-\theta) \equiv 0 \bmod f(x)$. Therefore $s(x)=0, h(x)=\alpha g(x)$. Similarly, if $g(x) h(x) \equiv 0 \bmod f(x)$, then $h(x)=(x-\theta) h_{0}(x)$.

Lemma

1) Since Λ is commutative, $\Lambda^{*} \cong \Lambda$ and we shall drop the sign $*$.

The kernel of the augmentation $\varepsilon: \Lambda^{e} \rightarrow \Lambda, \varepsilon(\lambda \otimes \mu)=\lambda \mu$ is $\Lambda^{e}(\theta \otimes 1$ $-1 \otimes \theta)$.

Proof. Since Λ is commutative, ε is a ring homomorphism. So that $\Lambda^{e}(\theta \otimes 1-1 \otimes \theta)$ is contained in the kernel of ε. Conversely, if $\varepsilon\left(\sum_{i, j} c_{i, j} \theta^{i} \otimes \theta^{j}\right)=0$, then from $\sum_{i, j} c_{i, j} \theta^{i} \otimes \theta^{j}$
$=\sum c_{i j}\left(\theta^{i} \otimes 1\right)\left(1 \otimes \theta^{j}\right)=\sum c_{i j}\left(\theta^{i} \otimes 1\right)\left\{\theta^{j} \otimes 1+\left(1 \otimes \theta^{j}-\theta^{j} \otimes 1\right)\right\}$
$=\sum c_{i j}\left(\theta^{i} \otimes 1\right)\left\{\theta^{j} \otimes 1+\left(1 \otimes \theta^{j-1}+\theta \otimes \theta^{j-2}+\cdots+\theta^{j-1} \otimes 1\right)(1 \otimes \theta-\theta \otimes 1)\right\}$
$=\sum c_{i j} \theta^{i+j} \otimes 1+\left[\sum c_{i j}\left(\theta^{i} \otimes 1\right)\left(1 \otimes \theta^{j-1}+\cdots+\theta^{j-1} \otimes 1\right)\right](1 \otimes \theta-\theta \otimes 1)$
we have $\varepsilon\left(\left(\sum c_{i j} \theta^{i+j}\right) \otimes 1\right)=\sum c_{i j} \theta^{i+j}=0$, which proves the assertion.
Now we consider the following Λ^{e}-resolution over Λ :

$$
\cdots \xrightarrow{d_{4}} \Lambda^{e} \xrightarrow{d_{3}} \Lambda^{e} \xrightarrow{d_{2}} \Lambda^{e} \xrightarrow{d_{1}} \Lambda^{e} \xrightarrow{\varepsilon} \Lambda \longrightarrow 0
$$

where

$$
\varepsilon: \Lambda^{e} \rightarrow \Lambda, \varepsilon\left(\sum \lambda \otimes \mu\right)=\sum \lambda \mu
$$

$$
d_{2_{r+1}}\left(\sum \mu \otimes \lambda\right)=\left(\sum \mu \otimes \lambda\right)(\theta \otimes 1-1 \otimes \theta)
$$

$$
d_{2 r}\left(\sum \mu \otimes \lambda\right)=\left(\sum \mu \otimes \lambda\right) g_{e}(\theta)
$$

This is Λ^{e}-free and, by the above lemma, acyclic.
To calculate $H^{n}(\Lambda, A)$ and $H_{n}(\Lambda, A)$ for any A^{e} module A, we consider the complex
where δ_{i} and ∂_{i} are induced homomorphisms of d_{i}. Considering the isomorphisms

$$
\operatorname{Hom}_{\Lambda^{e}}\left(A^{e}, A\right) \cong A, \quad A \otimes_{A^{e}} \Lambda^{e} \cong A,
$$

we may translate δ_{i} and ∂_{i} into the endomorphisms of A

$$
\begin{array}{cc}
\partial_{2 r+1}(a)=a \theta-\theta a\left(=\Delta^{*} \theta \cdot a\right), & \delta_{2 r+1}(a)=\theta a-a \theta, \\
\partial_{2 r}(a)=\sum b_{i j} \theta^{j} a \theta^{i}\left(=g_{e}^{*}(\theta) \cdot a\right), & \delta_{2 r}(a)=\sum b_{i j} \theta^{i} a \theta^{j}
\end{array}
$$

for $a \in A$. Thus we have
Theorem

$$
\begin{aligned}
& H^{2 r+1}(\Lambda, A) \cong A g_{g_{e}(\theta)} / A^{\Delta \theta}, \quad H^{2 r+2}(\Lambda, A) \cong A_{\Delta \theta} / A^{g_{e}(\theta)} \\
& H_{2 r+2}(\Lambda, A) \cong A_{g_{e}^{*}(\theta)} / A^{\Delta^{*} \theta}, \quad H_{2 r+1}(\Lambda, A) \cong A_{\Delta} *_{\theta} / A_{e}^{g_{e}^{*}(\theta)}
\end{aligned}
$$

for $r \geqq 0$, where

$$
A_{\square}=\{a \in A \mid \square a=0\}, \quad A^{\square}=\{\square a \mid a \in A\}
$$

for any two sided 1 module A (considered as left Λ^{e} module).
Corollary

$$
\begin{aligned}
& H^{n+2}(\Lambda, A) \cong H^{n}(\Lambda, A) \\
& H_{n+2}(\Lambda, A) \cong H_{n}(\Lambda, A)
\end{aligned}
$$

for $n \geqq 1$.
Theorem
If $\theta a=a \theta$ for any a in A, then

$$
\begin{gathered}
H^{2 r+1}(\Lambda, A) \cong H_{2 r+2}(\Lambda, A) \cong A_{f^{\prime}(\theta)} \\
H^{2 r+2}(\Lambda, A) \cong H_{2 r+1}(\Lambda, A) \cong A / A^{f^{\prime}(\theta)} . \quad r \geqq 0
\end{gathered}
$$

$$
\begin{aligned}
& \ldots \stackrel{\delta_{3}}{\leftarrow} \operatorname{Hom}_{1^{e}}\left(\Delta^{e}, A\right) \stackrel{\delta_{2}}{\longleftrightarrow} \operatorname{Hom}_{1^{e}}\left(\Lambda^{e}, A\right) \stackrel{\delta_{1}}{\leftrightarrows} \operatorname{Hom}_{1^{e}}\left(\Lambda^{e}, A\right) \\
& \cdots \xrightarrow{\partial_{3}} A \otimes_{1^{e}} \Lambda^{e} \xrightarrow{\partial_{2}} A \otimes_{\Lambda^{e}} \Lambda^{e} \xrightarrow{\partial_{1}} A \otimes_{\Lambda^{e}} \Lambda^{e}
\end{aligned}
$$

Proof. In this case $g_{\epsilon}(\theta) \cdot a=g(\theta) a$ and

$$
g(\theta)=\left(\theta-\theta^{\prime}\right) \cdots\left(\theta-\theta^{(n-1)}\right)=f^{\prime}(\theta) .
$$

The corollary of this note may be extended to the global case. Let K and L be the algebraic number fields, R and A the rings of all integers of K and L respectively. Then for any Λ^{e}-finitely generated module A we have

$$
\begin{gathered}
H_{n+2}(\Lambda, A) \cong H_{n}(\Lambda, A) \\
H^{n+2}(\Lambda, A) \cong H^{n}(\Lambda, A)
\end{gathered}
$$

for $n \geqq 1$. We may prove it by reducing it to the p-component and by using the above corollary.

References

[1] E. Artin: Algebraic Numbers and Algebraic Functions I (mimeographed note), New York University (1951).
[2] H. Cartan and S. Eilenberg: Homological Algebra, Princeton (1956).

