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1. Introduction. In this short note we shall discuss a simplified
version of our abstract vanishing cycle theory® including the unequal-
characteristic case. This theory provides, roughly speaking, abstract
analogues of parabolic substitutions which the solutions of differential
equations of Picard-Fuchs type undergo around the simplest type of
singular points and it can be applied to construct an algebraic theory
of modular functions with levels for all characteristics.”? This we
shall discuss separately® in the case of elliptic modular functions.

2. Starting point. Suppose that R is a discrete valuation ring.
In order to be able to apply Hensel’'s lemma* we shall assume that
R is complete. Let K be the quotient field and % the residue field.
We fix a natural homomorphism of R to % and call its extensions
specializations at the center of R.® Let C be a non-singular curve
defined over K and let (' be its specialization at the center of R.
We shall assume that C’ is absolutely irreducible. We shall also
assume that C’ has at most one singularity and that the singularity
is an ordinary double point. We note that ordinary singular points
are, in a sense which can be made precise easily, generic singularities.
At any rate, we shall denote this possible singular point by Q. If g
is the genus of C, the genus of C’ is either g or g—1 according as @
is absent or not. Pick a divisor t of C of degree d greater than
2g—2 rational over K such that the specialization t' at the center of
R is free from Q. This is always possible and, in fact, we can even
assume that t is positive. Let J be the Jacobian variety of C con-
structed by Chow’s method® with reference to r. Then the speciali-
zation J' of J at the center of R is either the Jacobian variety of C’
constructed by Chow’s method or a completion of the Rosenlicht
variety (J'), of C’ constructed by Chow’s method” with reference to
t’. Moreover, the image points of t and 1’ being taken as neutral
elements of J and (J7),, the group law of J is specialized to the group
law of (J'), at the center of R. We proved this compatibility only
in the geometric case.® However the proof can be taken over verbatim
to the present case. We also note that the Rosenlicht variety (J'), is
a commutative group variety which contains the group variety G, of
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the multiplicative group of the universal domain over k as a subgroup
with the Jacobian variety of C’ as the corresponding factor group.
We are assuming here that ¢’ does have a singular point. It might
be unnecessary to remind that J is defined over K while (J'), and G,
are defined over k.

3. Imvariant and vanishing points. Let m be a natural number
not divisible by the characteristic of k. Let £2 be the group of points
of order n on J. Then K(2) is a finite separable normal, i.e. a finite
Galois extension of K not trivial in general. Similarly, if 2’ is the
group of points of (J'), of order =, then k(2') is a finite Galois ex-
tension of k. Moreover, in the specialization of 2 at the center of R
every member of £’ appears with multiplicity one. The reason for
this is the same as in the geometric case: If we consider the graph
I" in the product J X J of the endomorphism u—>n-u of J, the specializa-
tion I'” of I at the center of R contains the closure of the graph
(I'") in the product (J),X(J"), of the endomorphism w'—>n-u’ of (J'),
as a simple component. Moreover, if we project other components of
I'" to the first factor of the product, we get a subset of the singular
locus of J'. Thus the positivity and the unicity of the multiplicity of
every member of £’ in the specialization of 2 at the center of R
follows from the intersection-theory. Therefore 2 contains a subgroup
Q, which is specialized isomorphically onto 2’ at the center of R.
According to Hensel’s lemma, the group £, is uniquely determined
and K(£,) is an unramified finite Galois extension of K. In case C’
is non-singular, i.e., in case J’ is the Jacobian variety of C’, we have
2,=9, hence K(Q) is unramified over K. If we exclude this trivial
case, then 2’ contains a cyclic subgroup of order » which comes from
G,. Therefore 2, contains a subgroup £, which is specialized
isomorphically onto that ecyclic group at the center of R. This 2,
is also uniquely determined and we call 2, the group of vawnishing
points of order m. The set-theoretic complement of 2, in £ is the
set of “non-invariant points” of order n. We note that our termi-
nology comes from the Lefschetz vanishing cyecle theory.” In fact
vanishing points of order » are obtained by the n-th division of period
along vanishing cycle while invariant points of order » are obtained
by the n-th division of periods along locally invariant 2g—1 cycles.

4. A pairing theorem. Assume in general that K is an arbitrary
field. We assume that » is a natural number not divisible by the
characteristic of K and 2 is the group of points of J of order .
Following Weil, to each pair (s, ) of elements of 2 we can associate
an n-th root of unity e(s,t) so that we get a skew-symmetric pairing
of 2 to itself.” The definition implies that e(s,t) is contained in
K(s,t). In fact, let M be a generic point of C over K(2) and let ¢
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be the canonical function of C normalized by ¢(M)=0. Then ¢ is
defined over K(M), hence over K(2,M). Let M, ---, M, , be in-
dependent generic points of C over K(2, M) and let ® be the locus of
the point 317-1¢(M,) of J over K(2,M). Then eg ,(s,t)=e(s,t) is con-
tained in K(s,t, M). However, since K(s,t, M) is regular over K(s,t),
we see that e(s,t) is contained in K(s,t) as asserted. Therefore K(£2)
always contains the field of n-th roots of unity. On the other hand,
if ¢ is an automorphism of K(2) over K, the definition of e(s, t) implies
e(os, ot)=ve(s,t). We know that £ is a vector space of dimension 2g
over integers modulo » while the multiplicative group of =-th roots
of unity is a vector space of dimension one over integers modulo .
Therefore the automorphism o induces linear transformations M(o)
and m(c) of these wvector spaces and the above relation implies
det. M(o)=m(s)° mod n.

In particular, if K contains the field of n-th roots of unity, the linear
transformation M(s) is unimodular in the sense det. M(s)=1 mod n.
The proof is not quite trivial, but, if we make use of the connected-
ness of the symplectic group,'” it is immediate. The above remarks
will play a role in our later papers. Now we shall assume again that
K is complete with respect to a real discrete valuation and we shall
prove the following theorem:

THEOREM 1. The two groups 2, and 2, are the groups of an-
nihilators of each other in £ (with respect to the skew-symmetrie
pairing).

This theorem can be proved directly by examining the specializa-
tion of the theta divisor ®. However, even in the geometric case, the
proof along this line is not simple. A shorter proof can be obtained,
as in the geometric case, by using another definition of e(s, t), which
is as follows: Let a and b be two divisors of C of degree zero rep-
resenting s and t. Then m-a and n-b are divisors of functions f
and # on C. If a and b are taken to have no point in common, we
have

e(s, t)y=h(a) : f(b).*»
Now, if s and t are elements of 2, they are specialized to simple
points 8’ and ¢’ of J' over any specialization of £, at the center of
R. Let e(s,t) be the specialization of e(s,t) over the specialization
(s, t)—>(s, t') at the center of R. If we pick a and b suitably, in the
specialization (a/,5) of (a,0) over the specialization (s, ¢, e(s,t)) >
(8,1, e(s, t)) at the center of R both a’ and b’ come to be free from
@ and have no point in common. The construction is similar as in
the geometric case, hence we shall not go into detail. Consider the
non-singular model C'* of C’. Let a* and 0* be the unique transforms
of @’ and " on C*. Then n-a* and n-b* are divisors of functions f*
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and A* on C* and we have
e(s, t)Y =h*(a*) : £*(6%).

However, if t belongs not only to 2, but also to £2,, then b* itself is
a divisor of a funection A** on C* and we can assume that A* is just
the n-th power of h**. This implies e(s,t)=1. Since 7 is not divisi-
ble by the characteristic of %k, we get e(s,t)=1. We note that 2,
is a direct product of 2g—1 cyclic groups of order » while 2, is a
cyclic group of order n. Since the whole group £ is the direct
product of 2g cyclic groups of order », we see that 2, and 2, are
mutually the groups of all annihilators. This proves the theorem.

5. Parabolic substitutions. Now we shall apply the pairing
theorem to determine how the inertia group of K(2) over K operates
on £2. The result can be stated as follows:

THEOREM 2. Suppose that K(R2,) contains the field of n-th roots
of unity. Then an element s of 2 and its conjugate s’ over K(2,)
differ only by an element of 2,.

Let ¢ be an arbitrary element of 2,, Then by definition e(s,t)
is the conjugate of e(s,t) over K(£,), whence e(s’,t) coincides with
e(s, t). This implies e(s'—s, t)=1 for all ¢t in 2, hence by the pairing
theorem s’—s is an element of 2, Thisis what we wanted to prove.

As a consequence K(£) is tamely ramified over K. In order to
make the content of Theorem 2 much clearer, assume that & is alge-
braically closed. Then we have K(2,)=K and K contains the field of
n-th roots of unity. Therefore, if we take a base of 2 so that the
second axis is along 2, while the second up to the last axes are
along 02, the Galois group of K(2) over K operates on 2 as follows:

1m mod 7.
01
1

1
In particular the Galois group of K(£2) over K is isomorphic to a
subgroup of the additive group of integers modulo =.
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