149. On Convolution of Laurent Series

By Yûsaku Komatu
Department of Mathematics, Tokyo Institute of Technology, Tokyo

(Comm. by Z. Suetuna, m.J.A., Dec. 12, 1958)

1. Related to a conjecture proposed by Pólya and Schoenberg [4], we have observed in a previous paper [1] a class \Re_{0} of regular analytic functions defined in the unit circle $|z|<1$ which are of positive real part there and equal to unity at the origin. It has been shown that if both functions

$$
f(z)=1+2 \sum_{n=1}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=1+2 \sum_{n=1}^{\infty} b_{n} z^{n}
$$

belong to \Re_{0} then the function defined by

$$
h(z)=1+2 \sum_{n=1}^{\infty} a_{n} b_{n} z^{n}
$$

also belongs to \Re_{0}.
In the same paper [1], we have also observed, as a straightforward generalization of the class \Re_{0}, a class \Re_{q} of single-valued regular analytic functions defined in an annulus $(0<) q<|z|<1$ which are of positive real part and normalized by the conditions that their values on $|z|=q$ have the constant real part and that their Laurent expansions have the constant term equal to unity. For this class, it has been shown that if both functions

$$
f(z)=1+2 \sum_{n=-\infty}^{\infty} \frac{a_{n}}{1-q^{2 n}} z^{n} \text { and } g(z)=1+2 \sum_{n=-\infty}^{\infty} \frac{b_{n}}{1-q^{2 n}} z^{n}
$$

belong to \Re_{q} then the function defined by

$$
h(z)=1+2 \sum_{n=-\infty}^{\infty} \frac{a_{n} b_{n}}{1-q^{2 n}} z^{n}
$$

also belongs to \Re_{q}; here the prime means that the summand with the suffix $n=0$ is to be omitted.

On the other hand, in a previous paper [2], we have considered, together with the classes mentioned above, a wider class $\hat{\Re}_{q}$ which is obtained by rejecting the restricting condition for \Re_{q} imposed on image of $|z|=q$. Namely, the class consists of single-valued regular analytic functions defined in an annulus $(0<) q<|z|<1$ which are of positive real part and normalized by the condition that their Laurent expansions have the constant term equal to unity.

The result on \Re_{q} referred to above does not admit a formally direct generalization for the class $\hat{\Re}_{q}$ as it stands. In fact, for functions

$$
f(z)=1+2 \sum_{n=-\infty}^{\infty} \frac{a_{n}}{1-q^{2 n}} z^{n} \text { and } g(z)=1+2 \sum_{n=-\infty}^{\infty} \frac{b_{n}}{1-q^{2 n}} z^{n}
$$

both belonging to $\hat{\Re}_{q}$, the function defined by

$$
h(z)=1+2 \sum_{n=-\infty}^{\infty} \frac{a_{n} b_{n}}{1-q^{2 n}} z^{n}
$$

is not necessarily even convergent in $q<|z|<1$. For instance, we may observe a particular function

$$
\frac{2}{i}\left(\zeta\left(i \lg \frac{q}{z}\right)-\frac{\eta_{1}}{\pi} i \lg \frac{q}{z}\right)=1-2 \sum_{n=-\infty}^{\infty} \frac{q^{n}}{1-q^{2 n}} z^{n},
$$

the elliptic zeta-function depending on the primitive quasi-periods $2 \omega_{1}=2 \pi$ and $2 \omega_{3}=-2 i \lg q$. It maps $q<|z|<1$ univalently onto the right half-plane cut along a vertical rectilinear segment with the real part equal to unity and hence belongs surely to $\hat{\mathfrak{R}}_{q}$. The Laurent series obtained by convoluting it with itself as in the manner described above, namely the series

$$
1+2 \sum_{n=-\infty}^{\infty} \frac{q^{2 n}}{1-q^{2 n}} z^{n}
$$

converges if and only if z is contained in the annulus $1<|z|<1 / q^{2}$. Hence, in order to obtain an analogue for $\hat{\Re}_{q}$ as a generalization of the result established for \Re_{q}, a modification becomes necessary.

The purpose of the present paper is to show that such a modification is actually possible.
2. As shown in [2], any function $\Phi(z) \in \hat{\mathscr{R}}_{q}$ can be uniquely decomposed into the form

$$
\Phi(z)=R(z)+T(z)-1 ; \quad R(z) \in \Re_{q}, T(z) \in \Re_{q}^{\prime}
$$

where \Re_{q}^{\prime} denotes the class consisting of functions $\Psi(z)$ such that $\Psi(q / z)$ belongs to \Re_{q}. Based on this characteristic decomposition, we can establish a result for $\hat{\mathfrak{R}}_{q}$ which may be stated as follows.

Theorem. Let $f(z)$ and $g(z)$ both belong to the class $\hat{\Re}_{q}$ and their Laurent expansions be given by

$$
f(z)=1+2 \sum_{n=-\infty}^{\infty} \frac{a_{n}-q^{n} a_{n}^{\prime}}{1-q^{2 n}} z^{n} \text { and } g(z)=1+2 \sum_{n=-\infty}^{\infty} \frac{b_{n}-q^{n} b_{n}^{\prime}}{1-q^{2 n}} z^{n}
$$

where, according to the characteristic decompositions, it is supposed that

$$
\begin{array}{ll}
1+2 \sum_{n=-\infty}^{\prime} \frac{a_{n}}{1-q^{2 n}} z^{n} \in \Re_{q}, & 1-2 \sum_{n=-\infty}^{\infty} \frac{q^{n} a_{n}^{\prime}}{1-q^{2 n}} z^{n} \in \Re_{q}^{\prime}, \\
1+2 \sum_{n=-\infty}^{\infty} \frac{b_{n}}{1-q^{2 n}} z^{n} \in \Re_{q}, & 1-2 \sum_{n=-\infty}^{\prime} \frac{q^{n} b_{n}^{\prime}}{1-q^{2 n}} z^{n} \in \Re_{q}^{\prime} .
\end{array}
$$

Then the function defined by

$$
h(z)=1+2 \sum_{n=-\infty}^{\infty} \frac{a_{n} b_{n}-q^{n} a_{n}^{\prime} b_{n}^{\prime}}{1-q^{2 n}} z^{n}
$$

also belongs to $\hat{\Re}_{q}$.
Proof. In view of the result for \Re_{q} established in [1], we conclude immediately that the function defined by

$$
R(z)=1+2 \sum_{n=-\infty}^{\infty} \frac{a_{n} b_{n}}{1-q^{2 n}} z^{n}
$$

belongs to \Re_{q}. On the other hand, we see by assumption that both

$$
1+2 \sum_{n=-\infty}^{\infty} \frac{a_{-n}^{\prime}}{1-q^{2 n}} z^{n} \quad \text { and } \quad 1+2 \sum_{n=-\infty}^{\infty} \frac{b_{-n}^{\prime}}{1-q^{2 n}} z^{n}
$$

belong to \Re_{q}. By the same reason as above, the function defined by

$$
S(z)=1+2 \sum_{n=-\infty}^{\infty} \frac{a_{-\infty}^{\prime} b_{-n}^{\prime}}{1-q^{2 n}} z^{n}
$$

belongs to \Re_{q}, and hence the function defined by

$$
T(z)=S\left(\frac{q}{z}\right)=1-2 \sum_{n=-\infty}^{\prime} \frac{q^{n} a_{n}^{\prime} b_{n}^{\prime}}{1-q^{2 n}} z^{n}
$$

belongs to \Re_{q}^{\prime}. Consequently, the function $h(z)$ defined in the theorem is expressed by

$$
h(z)=R(z)+T(z)-1 ; \quad R(z) \in \Re_{q}, T(z) \in \Re_{q}^{\prime} .
$$

The right-hand member in the last relation expresses the decomposition of $h(z)$ characteristic to the class $\hat{\mathfrak{R}}_{q}$, whence follows the assertion of the theorem.

Finally we state a supplementary remark: The decomposition theorem on $\hat{\mathfrak{R}}_{q}$ referred to above, combined with an integral representation for \Re_{q}, or, equivalently and rather directly, an integral representation for $\hat{\mathscr{R}}_{q}$ itself yields readily an integral representation of Laurent coefficients of a function from the class $\hat{\mathfrak{H}}_{q}$. In fact, the coefficients of $g(z)$ in the theorem are given by

$$
b_{n}=\int_{-\pi}^{\pi} e^{-i n \varphi} d \rho(\varphi), \quad b_{n}^{\prime}=\int_{-\pi}^{\pi} e^{-i n \varphi} d \tau(\varphi)
$$

where $\rho(\varphi) \equiv \rho_{g}(\varphi)$ and $\tau(\varphi) \equiv \tau_{g}(\varphi)$ are real-valued increasing functions associated to $g(z)$ which are defined for $-\pi<\varphi \leqq \pi$ and with the total variation equal to unity; cf. [3]. It is then readily verified that the expression of $h(z)$ can be transformed into

$$
h(z)=\int_{-\pi}^{\pi} R_{1}\left(z e^{-i \varphi}\right) d \rho(\varphi)+\int_{-\pi}^{\pi} T_{1}\left(z e^{-i \varphi}\right) d \tau(\varphi)-1
$$

where $R_{1}(z)$ and $T_{1}(z)$ denote the components of $f(z)$ in its characteristic decomposition. Since the first and second terms in the last expression of $h(z)$ belong evidently to the classes \Re_{q} and \Re_{q}^{\prime}, respectively, we conclude again that $h(z)$ surely belongs to the class $\hat{\mathfrak{R}}_{q}$.

The alternative proof of the theorem just mentioned may be regarded certainly as a modification of the argument previously employed for establishing the result in the case of \Re_{q}.

References

[1] Komatu, Y.,: On convolution of power series, Kōdai Math. Sem. Rep., 10, 141-144 (1958).
[2] Komatu, Y.,: On the range of analytic functions with positive real part, Kōdai Math. Sem. Rep., 10, 145-160 (1958).
[3] Nishimiya, H.,: On coefficient regions of Laurent series with positive real part, to appear in Kōdai Math. Sem. Rep., 11 (1959).
[4] Pólya, G., and Schoenberg, I. J.,: Remarks on de la Vallée Poussin means and convex conformal maps of the circle, Pacific Jour. Math., 8, 295-334 (1958).

