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22. An Abstract Analyticity in Time for Solutions
of a Diffusion Equation

By Kosaku YoSipaA
Department of Mathematics, University of Tokyo
(Comm. by Z. SUETUNA, M.J.A., March 12, 1959)

1. Introduction and the result. Consider an equation of evolu-
tion
ou.

(1.1) —é—t—=A’M,, t>0,
where the differential operator
2
(12) A=a9(@)— 1) 2 o)
0x,0%; 0x;

is elliptic in a connected domain G of an m-dimensional euclidean space
E™. Under certain conditions upon the coefficients @, b and ¢ of A4, we
can specify a linear subspace D of L,(G) with the following three
properties.

(i) The functions €D are C= in G, and D is L,(G)-dense in L,(G)
such that AfeL,G) for feD.

(ii) If we consider A as an operator on DZ L,(G) into Ly(G),

then A admits, in L,(G), the smallest closed extension A,

(iii) A is the infinitesimal generator of a semi-group 7, of normal
type in L,(G) such that, for any feLy(G), u(t, x)=(T,f)(x) is a solution
of (1.1) with the initial condition
(L.1y Lz(G)-ltigl u(t, x)=s(x)

satisfying the “forward and backward unique continuation property ”:
(1.3) If, for a fixed ¢,>0, u(t, x£)=0 on an open set G,=G, then
u(t, x)=0 for every t>0 and every xecG,.

The proof of (1.3) is based upon the fact that T.f is an L,(G)-
valued abstract analytic function of ¢ in a certain sector of the com-
plex plane which contains the positive ¢-axis in its interior and with
t=0 as its vertex. Such abstract analyticity in time is implied by
the estimate (2.11) below of the resolvent of Av

Our result (1.3) gives a partial answer to a conjecture proposed
by S. Ito and H. Yamabe [2]. Actually, our solution u(t, x)=(T,f)(x)
enjoys the “unique continuation property”:

(1.3)" If, for a fixed t,>0, u(t, #)=0 on an open set G, =G, then
u(t, x)=0 for every t>0 and every xz¢G.

1) This estimate was given in the author’s lecture at Yale University in the fall
of 1958.
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This may be proved by combining (1.8) with the “space-like unique
continuation theorem for solutions of parabolic equations” obtained
recently by S. Mizohata [8]. Thus we obtain another proof of the
unique continuation theorem of S. Ito and H. Yamabe [2].?

2. The proof of the result. For the sake of simplicity of ex-
position, we shall be concerned with the case® G=E™. We assume
that the real-valued coefficients a,b and ¢ are C~ in E™ and that
(21) a¥(x) and its first and second partials, b'(x) and its first partials

and c(x) are, in absolute values, all bounded on E™ by a positive
constant S.
Thus the strict ellipticity of A implies the existence of two positive
constants 7 and 6 such that

(2.2) 3 Gza@8, 20316 on BT
for any real vector (£,&,---,&.).

Let H,=H,(E™) be the space of complex-valued C> functions
S (@)= f(x,,---,2,) in E™ for which

@3 W lh=( [1r@ P+ [1f@ ) <o,

and let I-.?1=L2(l'7”‘)=L2 be the completion of H, with respect to the
norm

(2.4 1£1=( [ 17@)pas)”

We denote by RH, (and RL,) the totality of real-valued functions
belonging to H; (and to L,).

Lemma. There exist two positive constants «, and 8, such that,
for any feRH,, the equation
(2.5) au—Au=f, a>max (a, d+pb,),
‘admits a uniquely determined solution wu(x)=wu,(x)cRH,, and we have
the estimate
(26) lu i< (@—a—p) [If1l.

Proof. The existence of the solution u ;e RH, for sufficiently large
a is proved in K. Yosida [4]. If we denote by (f, g) the inner prod-

uct f Ff@)g(x)dx, then for any weRH,,

B
@7) Il (eI~ Ayu]]- || u]| = | (aI— A, u)]
by Schwarz inequality. By partial integration, we have (see K. Yosida

[4])

2) For, these two authors treat the case where Ais self-adjoint with its spectrum

lying on negative real axis, and the estimate (2.11) is clear for such operator A.
3) If G is a bounded domain of E™, the method of the following proof may be

modified so as to apply to the case where A is an elliptic differential operator of 2n-order
(n>1).
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aaj

—fb‘iu—udx——fcuudw.
o 0x; -
Hence we have, by (2.1)-(2.2) and the inequality |en|=<2-'(|¢|*+|7[?),
(aI—A)u, w)=a|[u]l*+o(| w|fi—]lw|]*)
(2.9) —mBl(||u|fi—||w )+ m] | +m* || w]|]]
= La—d—mf(my~ —v+m-] |||+ @—mp) || ull

for any v>0. Thus we have (2.6) from (2.7), by taking »>0 so small
that (0—mpBy)>0 and B,=mpP(my'—v+m-)>0.

Corollary. Let us consider A as an operator defined on {f; feRH,,
AfeRH}Z RL, into RL,., Then the smallest closed extension 4, in
RL,, of A satisfies the condition that, for & >max (a,, d+ 5,), the inverse

(aI—A)-! exists as a bounded linear operator defined on RL, into RL,
with the estimate
(2.10) l|(aI—A) || < (a—d— o).

Theorem 1. If we consider A as an operator on {f; feH,, AfcH,}
€ L, into L,, then the smallest closed extension Z, in L,, of A is the
infinitesimal generator of a semi-group 7, in L, which is strongly
continuous in ¢, || T,|| Zexp ((6+B,)t) and such that

(2.11) llliFlrl°ll((a+¢:if)1~A)"‘ll<°°-

Proof. By the lemma and the reality of the coefficients of A4, we
see that the range (al—A)- H, is, for a>max (ay, 6+ 8,), L.-dense in L,.
Moreover we have, for (u++—1v)eH,,

[l (aI—A)(u+V—10) |*=|| (aI— A)u ||+ || (I — A)v[*
Z(a—3—PBo)*|| w|[*+(a—d—Bo)*||v]["

Thus (al —ﬁ)" is a bounded linear operator on L, into L, satisfying
(2.12) l| (@I — &) [|<(a—d— o).

Hence the first part of the theorem is proved (see E. Hille-R. S.

Phillips [1] or K. Yosida [5]). We have to show that (2.11) holds
good. We have, for we H;,, a>max (a,, 6+ 8,),

[ ((@+V=T1e)I— Ayw||-{|w|| = | (((a+V—=1c)I— A)w, w)|.
As in (2.9), we obtain

[Real Part (((a=++—1z)I—A)w, w)|

ow ow da¥ ow —
= 2+ Real Part V= ——dw —wd
a||w|[’+ Real Par (Jna o, o1, +Em . aij @

—Efnbi%@dx-Efmcw@dw)|

%

= (a—d—pBo) || w|[*+ @ —mpy) ||w][:.

(aI—A)u, u):a“uHZ_I_faij u ow g faa gu
(2.8) v
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Similarly we have
|Imaginary Part (((a-+v—12)I—A)w, w)|

=| || [fw|*—mp{{|w]i+m||w]}|=|(<| —m*B) [w]|*—mB || wif].

If we assume that there exists weH,, ||w]||=:0, such that

| Imaginary Part (((a++—12)I—A)w, w)| <2 }(|z]—m2B)||w]|?
for sufficiently large z (or for sufficiently large —z), then, for such
large = (or —71),

mB||w|fi =27 (|| —m?B) || w|[*.

Hence, for such large z (or —<),

|Real Part ((ad-v—1)I—A)w, w)|= (a—mﬁu)ﬂilz‘—mf@ (wlf

mp
Thus (2.11) is proved.

Theorem 2. The semi-group T, is, for t>0, strongly differentiable
in ¢ any number of times. Actually, if we denote by 7% the k-th
strong derivative of T, with respect to ¢, then there exists a positive
constant ¢ such that, for any ¢>0, the sequence of operators

()=t T
is, as n 4 o, convergent in the sense of the norm of operators when
(2.12) [2—t] < et.
Proof. See K. Yosida [6].2
Corollary. For any fe€L,, u(t, x)=(Tf)(x) is infinitely differentiable
in t>0 and xcE™ and satisfies the Cauchy problem (1.1)-(1.1).

Proof. If we apply, in the sense of the distribution of L. Schwartz,
the elliptic differential operator

(5 +4)

any number of times to u(f, ), then the result is locally square inte-
grable in the product space (0<t< o)X E™. Thus u(t, x) is equivalent
to a function which is C* in (0<it< )X E™ See, for the details,
K. Yosida [4].

Proof of 1.3. Since T®=A"T, we have, by Theorem 2,

lim || Zo.0f = 3306 AT, £ 1| =0

for sufficiently small h. Hence there exists a sequence {#'} of natural
numbers such that

u(ty+h, £)=lim kﬁ (ED) *h*A*u(t, ) for almost all xe E™.
w00 k=0
By the hypothesis in (1.3), we have A*u(t,, x)=0 in G,, and hence u(t,
+h,2)=0 in G,. Repeating the process we see that wu(f,x)=0 for
every t>0 and every x¢G,.

4) The ‘“if” part of Theorem 2 in K. Yosida [6] must be corrected as: if
Illi‘rrn log|z|-|| RA+1r, A)||=0, then T; exists for every ¢>0.
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