97. Note on Left Simple Semigroups

By Tôru SAITÔ

Tokyo Gakugei University (Comm. by K. SHODA, M.J.A., Oct. 12, 1959)

1. Teissier [5] considered homomorphisms of a left simple semigroup with no idempotent onto a semigroup which contains at least one idempotent, and characterized the inverse images of idempotents in such homomorphic mappings. In this note, we consider a method of constructing such a homomorphism, which turns out to be the finest in such homomorphisms.

We use terminologies in [2] without definitions and use the results obtained in [2] and [3] freely.

2. In this note, we denote a left simple semigroup by S.

In S, we define a binary relation ${}_{s}\Sigma$ as follows:

for $a, b \in S, a \equiv b({}_{s}\Sigma)$ means that there exists a finite sequence of elements m_{1}, \dots, m_{n-1} such that

 $aS \[mathbb{Q}\] m_1S \[mathbb{Q}\] \cdots \[mathbb{Q}\] m_{n-1}S \[mathbb{Q}\] bS,$

where $xS \not \subseteq yS$ signifies that the sets xS and yS have at least one element in common.

It is easy to see that ${}_{s}\Sigma$ is an equivalence relation in S, which is left regular, that is,

 $a \equiv b (_{s}\Sigma)$ implies $ca \equiv cb (_{s}\Sigma)$.

In Dubreil's terminology, ${}_{s}\Sigma$ is the generalized left reversible equivalence associated to S [1, p. 258].

Lemma 1. $ac \equiv a(s\Sigma)$ for all $a, c \in S$ (cf. [1, p. 260, Théorème 8]).

Proof. For any $s \in S$, we have (ac)s = a(cs). Hence we have $acS \bigotimes aS$, and so $ac \equiv a({}_{s}\Sigma)$.

Lemma 2. ${}_{s}\Sigma$ is an equivalence relation which is regular.

Proof. It suffices to show that ${}_{s}\Sigma$ is right regular, that is, $a \equiv b({}_{s}\Sigma)$ implies $ac \equiv bc({}_{s}\Sigma)$. And, in fact, if $a \equiv b({}_{s}\Sigma)$, then, by Lemma 1, we have $ac \equiv a \equiv b \equiv bc({}_{s}\Sigma)$.

Now, we denote the core of S by I. I is a normal and left unitary subsemigroup of S [2, Theorem 1].

Lemma 3. For any $a \in S$, there exists an element $i \in I$ such that $a \equiv i({}_{S}\Sigma)$.

Proof. Since S is left simple, we can take an element u such that ua=a. u is clearly an element of I, and also, by Lemma 1, we have $a=ua\equiv u(_{s}\Sigma)$.

Since ${}_{s}\Sigma$ is a regular equivalence relation in S, ${}_{s}\Sigma$ induces a regular equivalence relation in semigroup I. Hence we can consider

T. SAITÔ

the quotient semigroup $I/_s\Sigma$ of the semigroup *I*. We denote the totality of classes which are the elements of $I/_s\Sigma$ by $\{J_{\lambda}; \lambda \in A\}$, and denote the product of J_{λ} and J_{μ} in $I/_s\Sigma$ by $J_{\lambda} \cdot J_{\mu}$.

Lemma 4. $J_{\lambda} \cdot J_{\mu} = J_{\lambda}$ for all J_{λ} , $J_{\mu} \in I/_{S}$.

Proof. For $j \in J_{\lambda}$, $j' \in J_{\mu}$, $J_{\lambda} \cdot J_{\mu}$ is, by definition, the class which contains the element jj'. On the other hand, by Lemma 1, we have $jj' \equiv j({}_{s}\Sigma)$, and so jj' belongs to the class which contains j, that is, belongs to J_{λ} . Hence $J_{\lambda} \cdot J_{\mu} = J_{\lambda}$.

Now, we consider a mapping φ of S into $I/_S\Sigma$. For any $a \in S$, $\varphi(a)$ is defined to be the class J_λ which contains an element *i* such that $i \equiv a({}_S\Sigma)$. By Lemma 3, $\varphi(a)$ is defined certainly for all $a \in S$, and it is clear that $\varphi(a)$ is uniquely determined irrespective of the choice of element *i*.

Lemma 5. $\varphi(a)$ is a homomorphism of S onto $I/_s\Sigma$.

Proof. For $a, b \in S$, we take an element i such that $a \equiv i({}_{s}\Sigma)$. Then, by Lemma 1, we have $ab \equiv a \equiv i({}_{s}\Sigma)$, and so $\varphi(ab) = \varphi(a)$. Hence, by Lemma 4, we have $\varphi(ab) = \varphi(a) = \varphi(a) \cdot \varphi(b)$, and so φ is a homomorphism. On the other hand, for any $J_{\lambda} \in I/{}_{s}\Sigma$, we take an element $j \in J_{\lambda}$. Then, by definition, $\varphi(j) = J_{\lambda}$, and so φ is a homomorphism onto $I/{}_{s}\Sigma$.

In [2], we proved that, for a left simple semigroup S, there exists a homomorphism θ of S onto a group G such that the kernel of θ is I [2, Theorem 3].

Lemma 6. If $\theta(a) = \theta(b)$ and xa = b, then $x \in I$.

Proof. Under the assumption of this lemma, we have $\theta(x)\theta(a) = \theta(b) = \theta(a)$, and so $\theta(x) = e$, where e is the identity element of group G. Therefore we have $x \in I$.

Now, we consider the direct product T of $I/_{S}\Sigma$ and the group G above-mentioned. And we define a mapping Ψ of S into T as follows: $\Psi(a) = (\varphi(a), \theta(a)).$

 ψ is evidently a homomorphism of S into T.

Lemma 7. An element (J_{λ}, g) of T is an idempotent, if and only if g is the identity element e of G.

Proof. By Lemma 4, we have $(J_{\lambda}, g)(J_{\lambda}, g) = (J_{\lambda} \cdot J_{\lambda}, g^2) = (J_{\lambda}, g^2)$. Hence (J_{λ}, g) is an idempotent, if and only if $g^2 = g$, and so if and only if g = e.

Lemma 8. $\psi^{-1}(J_{\lambda}, e) = J_{\lambda}$.

Proof. For any $j \in J_{\lambda}$, we have $\varphi(j) = J_{\lambda}$. Also, since $j \in J_{\lambda} \subseteq I$, we have $\theta(j) = e$. Hence we have $\psi(j) = (J_{\lambda}, e)$, and so $J_{\lambda} \subseteq \psi^{-1}(J_{\lambda}, e)$. Conversely, let us suppose that $\psi(a) = (J_{\lambda}, e)$. Then, since $\theta(a) = e$, we have $a \in I$. Hence $a \in J_{\mu}$ for some $\mu \in \Lambda$. But then, we have $\varphi(a) = J_{\mu}$ and $\psi(a) = (J_{\mu}, e)$. By assumption, we have $\psi(a) = (J_{\lambda}, e)$ and so $a \in J_{\mu} = J_{\lambda}$. Hence $\psi^{-1}(J_{\lambda}, e) \subseteq J_{\lambda}$.

Lemma 9. ψ is a homomorphism onto T.

Proof. Let (J_{λ}, g) be an arbitrary element of T. Since θ is a homomorphism onto G, there exists an element a such that $\theta(a)=g$. Also we take any element $j \in J_{\lambda}$. Then, by Lemma 8, we have $\psi(j) = (J_{\lambda}, e)$. Hence we have $\psi(ja) = \psi(j)\psi(a) = (J_{\lambda}, e)(\varphi(a), g) = (J_{\lambda} \cdot \varphi(a), eg) = (J_{\lambda}, g)$.

Summarizing the above lemmas, we obtain the following

Theorem 1. ψ is a homomorphism of a left simple semigroup S onto a semigroup T which contains at least one idempotent, and in this homomorphism ψ , the inverse images of idempotents of T coincide with the classes J_{λ} which are the elements of $I/_{s}\Sigma$.

3. Now we consider a homomorphism ψ^* of left simple semigroup S onto a semigroup T^* which contains at least one idempotent. Being a homomorphic image of a left simple semigroup, T^* is also left simple. And it is well known that left simple semigroup T^* with idempotent can be represented by the direct product of two semigroups U^* and G^* , where U^* is a right anti-semigroup in terminology of Thierrin [6], that is, a semigroup which satisfies the condition as follows:

uu'=u for all $u, u' \in U^*$,

and G^* is a group (cf. [4]).

In association with the homomorphism ψ^* :

 $\psi^*(a) = (u, g)$ where $a \in S, u \in U^*, g \in G^*$,

we consider mappings φ^* and θ^* such that

 $\varphi^*(a) = u, \qquad \theta^*(a) = g.$

 φ^* and θ^* are easily seen to be homomorphisms of S onto U^* and G^* respectively.

Lemma 10. An element (u, g) of T^* is an idempotent, if and only if g is the identity element e^* of the group G^* .

Proof is similar as in Lemma 7.

Lemma 11. $\varphi^*(ab) = \varphi^*(a)$ for all $a, b \in S$.

Proof. $\varphi^*(ab) = \varphi^*(a)\varphi^*(b) = \varphi^*(a)$.

Lemma 12. $\varphi(a) = \varphi(b)$ implies $\varphi^*(a) = \varphi^*(b)$.

Proof. If $\varphi(a) = \varphi(b)$, then the elements a and b are congruent modulo ${}_{s}\Sigma$ to an element of the class $\varphi(a) = \varphi(b)$, and so $a \equiv b({}_{s}\Sigma)$. Hence there exists a finite sequence of elements $m_{1}, m_{2}, \dots, m_{n-1}$ such that

$$aS \Diamond m_1 S \Diamond m_2 S \Diamond \cdots \Diamond m_{n-1} S \Diamond bS.$$

Therefore $as = m_1s_1$ for some $s, s_1 \in S$. But then, we have, by Lemma 11, $\varphi^*(a) = \varphi^*(as) = \varphi^*(m_1s_1) = \varphi^*(m_1).$

Similarly, we have

 $\varphi^*(m_1) = \varphi^*(m_2), \cdots, \varphi^*(m_{n-1}) = \varphi^*(b),$

and hence we have $\varphi^*(a) = \varphi^*(b)$.

Lemma 13. $\theta^*(i) = e^*$ for all $i \in I$.

Proof. θ^* is a homomorphism of S onto group G^* . Hence the kernel $\{x; \theta^*(x)=e^*\}$ contains the core I [2, Theorem 2]. Hence, for any $i \in I$, we have $\theta^*(i)=e^*$.

Lemma 14. $\theta(a) = \theta(b)$ implies $\theta^*(a) = \theta^*(b)$.

Proof. Let us suppose that $\theta(a) = \theta(b)$. By the left simplicity of S, there exists an element x such that xa = b. Then, by Lemma 6, we have $x \in I$. Hence, by Lemma 13, we have $\theta^*(x) = e^*$, and so we have $\theta^*(b) = \theta^*(xa) = \theta^*(x)\theta^*(a) = \theta^*(a)$.

Lemma 15. $\psi(a) = \psi(b)$ implies $\psi^*(a) = \psi^*(b)$.

Proof. This is an immediate consequence of Lemmas 12 and 14. By Lemma 15, we can consider a homomorphism τ of T onto T^* such that $\psi^* = \tau \psi$. Thus, we obtain the following

Theorem 2. Let ψ^* be a homomorphism of left simple semigroup S onto a semigroup T^* which contains at least one idempotent. Then, there exists a homomorphism τ of T onto T^* such that $\psi^* = \tau \psi$.

References

- [1] P. Dubreil: Algèbre I, 2^e édi., Gauthier-Villars (1954).
- [2] T. Saitô: Homomorphisms of a left simple semigroup onto a group, Proc. Japan Acad., 34, 664-667 (1958).
- [3] —: Supplement to "Homomorphisms of a left simple semigroup onto a group", Proc. Japan Acad., 35, 114 (1959).
- [4] Th. Skolem: Some remarks on semi-groups, Norske Vid. Selsk. Forh., 24, 42-47 (1952).
- [5] M. Teissier: Sur les demi-groupes ne contenant pas d'élément idempotent, C. R. Acad. Sci. Paris, 237, 1375-1377 (1953).
- [6] G. Thierrin: Sur une classe de demi-groupes inversifs, C. R. Acad. Sci. Paris, 234, 177-179 (1952).