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132. Some Notes on Cesdro Summation

By Kenji YANO
Department of Mathematics, Nara Women’s University, Nara, Japan

(Comm. by Z. SUETUNA, M.J.A., Dec. 12, 1959)

In this paper we shall establish two lemmas concerning the Cesro
summability of Fourier series. Of these, Theorem 1 is closely related
to the result of Chandrasekharan and Szsz 2, Theorem 5. And
Theorem 2 is concerned with the estimation of the principal part of
Fejr kernels.

1. THEOREM 1. If (f(t)eL in 0tt0, and r:>0, 3>0, and q be
arbitrary, then

(1.1) )(t)=-l--- (t-)-f()d-o(t) (tO)
r(r)

is equivalent to
1 (t_)_f()d_o(t,) (tO).(1.2) O(t) r(r---o

Letting

(t)-- F(r+-- 1).t_(+ )(t) ( => 0),
 r(a+ 1)

and (t)-(t), we have the following
COROLLARY 1. Let (t)eL in (0, t0), and r>0, 0, and q be ar-

bitrary. Then
r(t)-- S+O(t-) (t-->O)

is equivalent to
s +o(t -9 (t -+ o),

where s is a constant independent of t.
Concerning this corollary, cf. loc. cit. [2_.
We need two lemmas:
LEMMA 1. Theorem I holds when -k, where k is a positive

integer.
This is Lemma 3 in the paper [3, but for the sake of complete-

hess we prove it. We first consider the case k--1. Observe now that
(1.3) (t)=t@(t)--r@ (t),
and that necessarily, since r>0,
(1.4) @+(t)-o(t).

If q>--l, then (1.1) implies
(1.5) +(t)=o(tq+),
and then by (1.3),
(1.6) (t)-o(t+),
which follows from (1.1) still when q --1, by (1.3) and (1.4).
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i.e.

Inversely, (1.6) is written as, by (1.3),
__rr 1(t’) o(tq-r),

t tr+l

d1--,()-I -o(-0.
dt

If q--r--l, integrating both sides from zero to t, we have
--o(tq-/), by (1.4), which is equivalent to (1.5). And, (1.5)holds
still when q--r --1 again by (1.4). Consequently, (1.6) implies (1.1)
by (1.3).

We have thus the lemma when k-1. In the general case k>l,
replacing (u) by u(u), u(u),..., successively it is proved by in-
duction.

LEMMA 2. If (t)eL in (0, x) and O<y<x, 0<rl, then

C(f) (-t)-(t)gt max () .
This is due to Riesz EI.
PROOF of THEOREM 1. (I) The case 0< r 1, r q. By the

second me-value theorem
1 (t_)_,()g

t (t-) ()g (o< t)
F()

=t(t)- ;) (t-u)r-u>(u)du’

where 0 and V0. So, by Lemma 2, we have
(1.7) ]f+’(t)] 2t. max ]O(u)].

Out

Hence, if (t)-o(tq), then (1.7) with V=0 yields (t)-o(t+q),
since q>0. Inversely, if (t)-o(tq+’), then (1.7) with
yields

’+(t) t’+-’ o(t )
which implies @(t)--o(tq) by Lemma 1, since IV] + 1 is integral. Hence,
we get the present case.

(II) The case 1 < r q. We have the identities

i(t)-(:)tf(t-u)-u-(u)du(r)
(.s)

_f--l+ (t_)__
F(r)

t+ d(,tl-i+(1.9) (t)-- -(7) dt

And, (1.1) is equivalent to, since rl,
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(.1)! ft(t U) 2 (u)du o(tq).

Suppose now that the theorem is true when r is replaced by
r--1. Then, (1.1)’ is equivalent to

(1.10) (t--u)r-u-ll(u)du--o(tq/-l), > 1,

which clearly implies

(1.11)

Substituting this and (1.10) into (1.8), we have
Ct(t) o(t ), a> 1,

and then --z(t) O(t - ) by Lemma 1.
Inversely, if (1.2) holds, i.e. Ot(t)--o(t+) then by integrating, we

have (1.11) for >0 from (1.9). (1.11) and (1.2) imply (1.10)by (1.8),
and then (1.1)’ by the above assumption. We thus get the present
case by induction.

(III) General case r>0, q arbitrary. We put
(u)=ue(u),

where k is a positive integer such that k+q>r, and define

(t)- (t-)-() (> o),
r(r)

and ,(t)- (t). Then
(1.12) (t)-(t), (t)-+(t) (> 0).
By the preceding result, we see that

’(t)- o(t+) (t)- o(t++),
since k+q>r. This is the same thing as, by (1.12),

(t)-o(t+) +(t) o(t++ ),
whence follows, by Lemma 1,

(t) o(t) (t) o(t+ ).
This proves the theorem completely.
2. TEOREM 2.1. If 0<<1,--l<fl, lk and 0<u<, then

we have

where O’s are independent of u and k.
PROOF.
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(2.1)
+f(t--u)m(t,u)dtdt--(2sin-u)-aI+J,

where 0<u< ,, and
1 2 t)--(2sin21--u) ].(2.2) re(t, u)-- t--u[( sin-l-2 -a -a

Here, for the sake of convenience we denote

(2.3) re(u, u)--im re(t, u)---u sin u

By the mean-value theorem,
re(t, u)-m(u, u)lu-i (u< ui< t).

And, clearly

(2.4) 3 re(t, u)- 1 .[m(t, t)--m(t, u)].
3t t--u

From these relations we see that re(t, u) conserves a constant sign for
0<u<t, and increases with 1/t in absolute value, and that

K(2.5) Ira(t, u) < Ira(u, u) l< Ut+l
where and in the sequel K denotes an absolute constant, and it may
vary from one occurrence to another. Now,

(2.6) I-- (t u)-etdt

And

f_f(t_u)-edt
=eU x-lelcxdx

=e, F()e,
by a well-known classical formula, cf. Zygmund [4, p. 224].

f-f(t_u)-edt_
e

eik= -(-u),--(_l),

and clearly I--O((--u)-/k). Hence, from (2.6) we get

(2.7)

(t-u-x)

Next, integrating by parts and using (2.4),
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(2.8)

By the monotonity of re(t, u), and (2.5),

j <K m(u, u) < K

It is analogous to J.. Hence, from (2.8) and (2.2),

-i -. -’) e O((2.9) J=(--u)’ I2--(2sinu) + k

Substituting (2.7) and (2.9) into (2.1) we get the theorem.
Theorem 2.1 may be improved more precisely as follows:

THEOREM 2. If 0<< 1, 1 < , 1 k and 0<u<, then

f(t--u) (2 sin lt)-etdt2

_+ F(+I) sin u e(+(+)’/
+i

+2-(-u) --+(-i).2-(-u)- k

ku ku/

where O’s are independent of u and k.
PROOF.

ing by parts,
We use the notations in the preceding proof. Integrat-

for 0<: u<:t, we have, as it is easily verified,

Applying Theorem 2.1 replaced (2 sin (2-t))- by re(t, u) to Jt, and
observing that by (2.4) and (2.3)

K]-m(t, u)l < u--V
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where

R (-u)-

Similarly

J.- (t-- u)-Im(t, t)--2 dt

=._F(3---_) m(u, u) e,//2)+ re(u, )(-- u)- +O(R),
i (i)

where re(u, =) 0.
Substituting these relations into the expressions of I and J re-

spectively, (2.1) yields the desired result.
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