By Yuzo UTUMI

Osaka Women's University (Comm. by K. SHODA, M.J.A., Jan. 12, 1960)

1. Throughout this note A will denote a ring with unit satisfying the minimum conditions for left and right ideals.

We shall consider the following conditions:

Condition (P). Let M be a module. If two submodules N_1 and N_2 are isomorphic, then the two residue modules M/N_1 and M/N_2 are isomorphic, too.

Condition (L_n) . Let A be a ring and $A^{(n)}$ the direct sum of n isomorphic copies of the left A-module A. Then the module $A^{(n)}$ satisfies (P).

Condition (R_n) =the right-left symmetry of (L_n) .

The following facts are known:

(1) If A is quasi-Frobenius (in short, QF), then A satisfies (L_n) and (R_n) for $n=1, 2, \cdots$ [3, Corollary 4.3]. (See also [4, Theorem 2.3].)

(2) Conversely, if A satisfies (L_n) and (R_n) for every natural number n, then A is QF [3, Theorem 4.4].

(3) If A is an algebra over an algebraically closed field, and if A satisfies (L_1) (or (R_1)), then A is QF [2, Theorem 3].

(4) There exists an algebra A satisfying (L_1) and (R_1) which is not QF [2, Remark].

Lemma 1. Let M be a module of finite length, and D a direct summand of M. If M satisfies (P), D also satisfies (P).

Proof. Let N_1 and N_2 be mutually isomorphic submodules of D, and let $M = D \oplus D'$. Then, $(D/N_1) \oplus D' \simeq M/N_1 \simeq M/N_2 \simeq (D/N_2) \oplus D'$ by assumption. Therefore $D/N_1 \simeq D/N_2$ by the Krull-Remak-Schmidt theorem, as desired.

From this lemma and the proof of [3, Theorem 4.4] it follows that every ring A satisfying (L_2) and (R_2) is QF. The purpose of the present note is to show the following

Theorem 2. Let A be a ring, and B a left A-module. Suppose that (1) A is a direct summand of B, and (2) for every indecomposable summand Ae_k of A, B contains a direct summand which is the direct sum of two isomorphic copies of Ae_k . If B satisfies (P), then A is QF.

As immediate consequences we obtain

Corollary 3. If A satisfies (L_2) (or (R_2)) then A is QF.

Corollary 4. Let A_2 be the total matrix ring of degree 2 over

A. If the left (or right) A_2 -module A_2 satisfies (P), A is QF.

Corollary 5. Let every simple summand of A modulo radical have the capacity >1. If the left (or right) A-module A satisfies (P), then A is QF.

2. In order to prove Theorem 2 we note first the following

Lemma 6. A ring A is QF whenever the following conditions are satisfied:

(i) If two left ideals l_1 and l_2 are isomorphic, then $l_2 = l_1 a$ for some $a \in A$.

(ii) Let e_1 and e_2 be primitive idempotents, and let \mathfrak{l}_1 be a left ideal contained in Ae_1 . If a homomorphism v of \mathfrak{l}_1 into Ae_2 is not one-to-one, there is an element a such that v is given by the right multiplication of a.

(iii) Let e be a primitive idempotent, and suppose that Ae is subdirectly irreducible. Let l_1 be a subideal of Ae. Then every homomorphism v of l_1 into Ae is given by the right multiplication of an element of A.

Proof. It is easy to verify that the proofs of [1, Lemma 2] and [1, Proposition 2] are still valid literally under our much weaker assumption, except the first part of the proof of [1, Proposition 2] which shows that $r(N)e_k$ is simple. However, the simplicity is easily proved in the following way. We assume that the conclusion of [1, Lemma 2] already has been verified. Let us suppose that $r(N)e_k$ is a direct sum of mutually isomorphic simple left ideals \mathfrak{m}_j , $j=1,\dots,s$. Let s>1. Denote an isomorphism of \mathfrak{m}_j onto \mathfrak{m}_{j+1} by w_j for $j=1,\dots,s-1$. We consider the endomorphism of $r(N)e_k$ which coincides with w_j on \mathfrak{m}_j for each $j=1,\dots,s-1$, and maps \mathfrak{m}_s to 0. By virtue of our assumption (ii) this endomorphism is given by the right multiplication of an element a. Evidently we may assume that $a \in e_k Ae_k$. Since $a^s=0$, $a \in e_k Ne_k \subseteq N$. Therefore, $(r(N)e_k)a \subseteq l(N)e_ka \subseteq l(N)N=0$, a contradiction. Thus, s=1 and $r(N)e_k$ is simple, as desired.

Lemma 7. Let M be a module and u an automorphism of M. Suppose that $M=M_1\oplus M_2$, where M_1 is an indecomposable submodule of finite length. Then $u(M_1)\cap M_1=0$ or $u(M_1)\cap M_2=0$.

Proof. Denote the projections of $M=M_1\oplus M_2$ on M_1 and M_2 by p_1 and p_2 respectively. Then, evidently $up_1u^{-1}=up_1u^{-1}p_1+up_1u^{-1}p_2$. It follows that $up_1u^{-1}p_1$ or $up_1u^{-1}p_2$ gives an automorphism of $u(M_1)$. Therefore, either $u(M_1) \cap M_2 \subseteq u(M_1) \cap \operatorname{Ker} (up_1u^{-1}p_1) = 0$ or $u(M_1) \cap M_1$ $\subseteq u(M_1) \cap \operatorname{Ker} (up_1u^{-1}p_2) = 0$, as desired.

Proof of Theorem 2. It suffices to verify the conditions (i)-(iii) in Lemma 6.

(a) If two left ideals l_1 and l_2 of A are isomorphic, then $A/l_1 \simeq A/l_2$ by assumption and Lemma 1. In view of [4, Theorem 1.3] there is an element a such that the right multiplication of a induces the isomorphism of A/l_1 and A/l_2 . Thus $l_1a = l_2$.

(b) Let e_1 and e_2 be primitive idempotents and v a homomorphism of a subideal l_1 of Ae_1 into Ae_2 . By assumption, B contains a direct summand $M=M_1\oplus M_2$ which is a direct sum of submodules M_i isomorphic to Ae_i , i=1, 2. Denote the isomorphism of Ae_i onto M_i by q_i , and set $N_1=q_1(l_1)$. Then, $q_2vq_1^{-1}$ gives a homomorphism w of N_1 into M_2 . Now we denote by N the module consisting of all x+w(x) for $x\in N_1$. Evidently $N\simeq N_1$. Hence $B/N\simeq B/N_1$ by assumption, and so $M/N\simeq M/N_1$ by Lemma 1. Thus, there exists an automorphism u of Msuch that $u(N_1)=N$ by [4, Theorem 1.3]. Let us suppose that $u(M_1)$ $\bigcap M_2=0$. Then we have $u(M_1)\oplus M_2\simeq M_1\oplus M_2=M$, and so $u(M_1)\oplus M_2$ =M. Let $q_1(e_1)=x+y$, $x\in u(M_1)$, $y\in M_2$, and let $z\in l_1$. $M_2\ni wq_1(z)+zy$ $=(q_1(z)+wq_1(z))-z(q_1(e_1)-y)=(q_1(z)+wq_1(z))-zx\in N+u(M_1)=u(N_1)$ $+u(M_1)=u(M_1)$. Hence $wq_1(z)+zy\in u(M_1)\cap M_2=0$. Therefore $q_2v(z)$ $=wq_1(z)=-zy=q_2(z(q_2^{-1}(-y)))$, and so $v(z)=z(q_2^{-1}(-y))$ for every $z\in l_1$.

(c) To verify (ii) we assume that v is not one-to-one. Then $0 \neq q_1(\operatorname{Ker} v) = \operatorname{Ker} w = N \cap M_1 = u(N_1) \cap M_1 \subseteq u(M_1) \cap M_1$, whence $u(M_1) \cap M_2 = 0$ by Lemma 7. Therefore from (b) it follows that v is given by the right multiplication of $q_2^{-1}(-y) \in A$.

(d) Finally, in order to verify (iii) we suppose that $v \neq 0$ and that $Ae = Ae_1 = Ae_2$ is subdirectly irreducible. By virtue of the argument (b) we need only to show that $u(M_1) \cap M_2 = 0$. Now let $u(M_1)$ $\cap M_2 \neq 0$. Then $u(M_1) \cap M_1 = 0$ by Lemma 7. For any $w(t) \in u(M_1)$ $\cap w(N_1)$ we have $t + w(t) \in N = u(N_1) \subseteq u(M_1)$. Hence $t \in u(M_1)$ and $t \in u(M_1)$ $\cap N_1 \subseteq u(M_1) \cap M_1 = 0$, whence t = 0. Thus $u(M_1) \cap w(N_1) = 0$, and so $u(M_1) \cap (M_2 \cap q_2 v(\mathfrak{l}_1)) = u(M_1) \cap q_2 v(\mathfrak{l}_1) = u(M_1) \cap w(N_1) = 0$. Therefore $(u(M_1) \cap M_2) \cap q_2 v(\mathfrak{l}_1) = 0$, which contradicts the subdirect irreducibility of $M_2 = q_2(Ae)$, completing the proof.

References

- M. Ikeda: A characterization of quasi-Forbenius rings, Osaka Math. J., 4, 203-209 (1952).
- [2] Yutaka Kawada: On similarities and isomorphisms of ideals in a ring, J. Math. Soc. Japan, 9, 374-380 (1957).
- [3] K. Morita and H. Tachikawa: Character modules, submodules of a free module, and quasi-Frobenius rings, Math. Zeitschr., 65, 414-428 (1956).
- [4] K. Morita, Yutaka Kawada, and H. Tachikawa: On injective modules, Math. Zeitschr., 68, 217-226 (1957).