# 5. A Remark on Quasi-Frobenius Rings 

By Yuzo Utumi<br>Osaka Women's University<br>(Comm. by K. Shoda, M.J.A., Jan. 12, 1960)

1. Throughout this note $A$ will denote a ring with unit satisfying the minimum conditions for left and right ideals.

We shall consider the following conditions:
Condition (P). Let $M$ be a module. If two submodules $N_{1}$ and $N_{2}$ are isomorphic, then the two residue modules $M / N_{1}$ and $M / N_{2}$ are isomorphic, too.

Condition ( $\mathrm{L}_{\mathrm{n}}$ ). Let $A$ be a ring and $A^{(n)}$ the direct sum of $n$ isomorphic copies of the left $A$-module $A$. Then the module $A^{(n)}$ satisfies ( P ).

Condition $\left(R_{n}\right)=$ the right-left symmetry of $\left(L_{n}\right)$.
The following facts are known:
(1) If $A$ is quasi-Frobenius (in short, QF), then $A$ satisfies ( $\mathrm{L}_{\mathrm{n}}$ ) and $\left(\mathrm{R}_{\mathrm{n}}\right)$ for $n=1,2, \cdots$ [3, Corollary 4.3]. (See also [4, Theorem 2.3].)
(2) Conversely, if $A$ satisfies ( $\mathrm{L}_{\mathrm{n}}$ ) and ( $\mathrm{R}_{\mathrm{n}}$ ) for every natural number $n$, then $A$ is QF [3, Theorem 4.4].
(3) If $A$ is an algebra over an algebraically closed field, and if $A$ satisfies $\left(\mathrm{L}_{1}\right)$ (or $\left(\mathrm{R}_{1}\right)$ ), then $A$ is QF [2, Theorem 3].
(4) There exists an algebra $A$ satisfying $\left(\mathrm{L}_{1}\right)$ and $\left(\mathrm{R}_{1}\right)$ which is not QF [2, Remark].

Lemma 1. Let $M$ be a module of finite length, and $D$ a direct summand of $M$. If $M$ satisfies (P), $D$ also satisfies (P).

Proof. Let $N_{1}$ and $N_{2}$ be mutually isomorphic submodules of $D$, and let $M=D \oplus D^{\prime}$. Then, $\left(D / N_{1}\right) \oplus D^{\prime} \simeq M / N_{1} \simeq M / N_{2} \simeq\left(D / N_{2}\right) \oplus D^{\prime}$ by assumption. Therefore $D / N_{1} \simeq D / N_{2}$ by the Krull-Remak-Schmidt theorem, as desired.

From this lemma and the proof of [3, Theorem 4.4] it follows that every ring $A$ satisfying ( $\mathrm{L}_{2}$ ) and $\left(\mathrm{R}_{2}\right)$ is QF. The purpose of the present note is to show the following

Theorem 2. Let $A$ be a ring, and $B$ a left $A$-module. Suppose that (1) $A$ is a direct summand of $B$, and (2) for every indecomposable summand $A e_{k}$ of $A, B$ contains a direct summand which is the direct sum of two isomorphic copies of $A e_{k}$. If $B$ satisfies ( P ), then $A$ is QF.

As immediate consequences we obtain
Corollary 3. If $A$ satisfies $\left(\mathrm{L}_{2}\right)$ (or $\left.\left(\mathrm{R}_{2}\right)\right)$ then $A$ is QF .
Corollary 4. Let $A_{2}$ be the total matrix ring of degree 2 over
$A$. If the left (or right) $A_{2}$-module $A_{2}$ satisfies (P), $A$ is QF .
Corollary 5. Let every simple summand of $A$ modulo radical have the capacity $>1$. If the left (or right) $A$-module $A$ satisfies ( P ), then $A$ is QF.
2. In order to prove Theorem 2 we note first the following

Lemma 6. A ring $A$ is QF whenever the following conditions are satisfied:
(i) If two left ideals $\mathfrak{r}_{1}$ and $\mathfrak{l}_{2}$ are isomorphic, then $\mathfrak{r}_{2}=\mathfrak{r}_{1} a$ for some $a \in A$.
(ii) Let $e_{1}$ and $e_{2}$ be primitive idempotents, and let $\Upsilon_{1}$ be a left ideal contained in $A e_{1}$. If a homomorphism $v$ of $\mathfrak{l}_{1}$ into $A e_{2}$ is not one-to-one, there is an element $a$ such that $v$ is given by the right multiplication of $a$.
(iii) Let $e$ be a primitive idempotent, and suppose that $A e$ is subdirectly irreducible. Let $l_{1}$ be a subideal of $A e$. Then every homomorphism $v$ of $\mathfrak{r}_{1}$ into $A e$ is given by the right multiplication of an element of $A$.

Proof. It is easy to verify that the proofs of [1, Lemma 2] and [1, Proposition 2] are still valid literally under our much weaker assumption, except the first part of the proof of [1, Proposition 2] which shows that $r(N) e_{k}$ is simple. However, the simplicity is easily proved in the following way. We assume that the conclusion of [1, Lemma 2] already has been verified. Let us suppose that $r(N) e_{k}$ is a direct sum of mutually isomorphic simple left ideals $\mathfrak{m}_{j}, j=1, \cdots, s$. Let $s>1$. Denote an isomorphism of $\mathfrak{m}_{j}$ onto $\mathfrak{m}_{j+1}$ by $w_{j}$ for $j=1, \cdots, s-1$. We consider the endomorphism of $r(N) e_{k}$ which coincides with $w_{j}$ on $\mathfrak{m}_{j}$ for each $j=1, \cdots, s-1$, and maps $\mathfrak{m}_{s}$ to 0 . By virtue of our assumption (ii) this endomorphism is given by the right multiplication of an element $a$. Evidently we may assume that $a \in e_{k} A e_{k}$. Since $a^{s}=0$, $a \in e_{k} N e_{k} \subseteq N$. Therefore, $\left(r(N) e_{k}\right) a \subseteq l(N) e_{k} a \subseteq l(N) N=0$, a contradiction. Thus, $s=1$ and $r(N) e_{k}$ is simple, as desired.

Lemma 7. Let $M$ be a module and $u$ an automorphism of $M$. Suppose that $M=M_{1} \oplus M_{2}$, where $M_{1}$ is an indecomposable submodule of finite length. Then $u\left(M_{1}\right) \cap M_{1}=0$ or $u\left(M_{1}\right) \cap M_{2}=0$.

Proof. Denote the projections of $M=M_{1} \oplus M_{2}$ on $M_{1}$ and $M_{2}$ by $p_{1}$ and $p_{2}$ respectively. Then, evidently $u p_{1} u^{-1}=u p_{1} u^{-1} p_{1}+u p_{1} u^{-1} p_{2}$. It follows that $u p_{1} u^{-1} p_{1}$ or $u p_{1} u^{-1} p_{2}$ gives an automorphism of $u\left(M_{1}\right)$. Therefore, either $u\left(M_{1}\right) \cap M_{2} \subseteq u\left(M_{1}\right) \cap \operatorname{Ker}\left(u p_{1} u^{-1} p_{1}\right)=0$ or $u\left(M_{1}\right) \cap M_{1}$ $\subseteq u\left(M_{1}\right) \cap \operatorname{Ker}\left(u p_{1} u^{-1} p_{2}\right)=0$, as desired.

Proof of Theorem 2. It suffices to verify the conditions (i)-(iii) in Lemma 6.
(a) If two left ideals $\mathfrak{I}_{1}$ and $\mathfrak{I}_{2}$ of $A$ are isomorphic, then $A / \mathfrak{I}_{1} \simeq A / \mathfrak{l}_{2}$ by assumption and Lemma 1. In view of [4, Theorem 1.3] there is an
element $a$ such that the right multiplication of $a$ induces the isomorphism of $A / \mathfrak{I}_{1}$ and $A / \mathfrak{I}_{2}$. Thus $\mathfrak{r}_{1} a=\mathfrak{r}_{2}$.
(b) Let $e_{1}$ and $e_{2}$ be primitive idempotents and $v$ a homomorphism of a subideal $\Upsilon_{1}$ of $A e_{1}$ into $A e_{2}$. By assumption, $B$ contains a direct summand $M=M_{1} \oplus M_{2}$ which is a direct sum of submodules $M_{i}$ isomorphic to $A e_{i}, i=1,2$. Denote the isomorphism of $A e_{i}$ onto $M_{i}$ by $q_{i}$, and set $N_{1}=q_{1}\left(\Upsilon_{1}\right)$. Then, $q_{2} v q_{1}^{-1}$ gives a homomorphism $w$ of $N_{1}$ into $M_{2}$. Now we denote by $N$ the module consisting of all $x+w(x)$ for $x \in N_{1}$. Evidently $N \simeq N_{1}$. Hence $B / N \simeq B / N_{1}$ by assumption, and so $M / N \simeq M / N_{1}$ by Lemma 1. Thus, there exists an automorphism $u$ of $M$ such that $u\left(N_{1}\right)=N$ by [4, Theorem 1.3]. Let us suppose that $u\left(M_{1}\right)$ $\bigcap M_{2}=0$. Then we have $u\left(M_{1}\right) \oplus M_{2} \simeq M_{1} \oplus M_{2}=M$, and so $u\left(M_{1}\right) \oplus M_{2}$ $=M$. Let $q_{1}\left(e_{1}\right)=x+y, x \in u\left(M_{1}\right), y \in M_{2}$, and let $z \in \Gamma_{1} . \quad M_{2} \ni w q_{1}(z)+z y$ $=\left(q_{1}(z)+w q_{1}(z)\right)-z\left(q_{1}\left(e_{1}\right)-y\right)=\left(q_{1}(z)+w q_{1}(z)\right)-z x \in N+u\left(M_{1}\right)=u\left(N_{1}\right)$ $+u\left(M_{1}\right)=u\left(M_{1}\right)$. Hence $w q_{1}(z)+z y \in u\left(M_{1}\right) \cap M_{2}=0$. Therefore $q_{2} v(z)$ $=w q_{1}(z)=-z y=q_{2}\left(z\left(q_{2}^{-1}(-y)\right)\right)$, and so $v(z)=z\left(q_{2}^{-1}(-y)\right)$ for every $z \in \mathfrak{I}_{1}$.
(c) To verify (ii) we assume that $v$ is not one-to-one. Then $0 \neq q_{1}(\operatorname{Ker} v)=\operatorname{Ker} w=N \bigcap M_{1}=u\left(N_{1}\right) \cap M_{1} \subseteq u\left(M_{1}\right) \cap M_{1}$, whence $u\left(M_{1}\right)$ $\cap M_{2}=0$ by Lemma 7. Therefore from (b) it follows that $v$ is given by the right multiplication of $q_{2}^{-1}(-y) \in A$.
(d) Finally, in order to verify (iii) we suppose that $v \neq 0$ and that $A e=A e_{1}=A e_{2}$ is subdirectly irreducible. By virtue of the argument (b) we need only to show that $u\left(M_{1}\right) \cap M_{2}=0$. Now let $u\left(M_{1}\right)$ $\cap M_{2} \neq 0$. Then $u\left(M_{1}\right) \cap M_{1}=0$ by Lemma 7. For any $w(t) \in u\left(M_{1}\right)$ $\cap w\left(N_{1}\right)$ we have $t+w(t) \in N=u\left(N_{1}\right) \subseteq u\left(M_{1}\right)$. Hence $t \in u\left(M_{1}\right)$ and $t \in u\left(M_{1}\right)$ $\cap N_{1} \subseteq u\left(M_{1}\right) \cap M_{1}=0$, whence $t=0$. Thus $u\left(M_{1}\right) \cap w\left(N_{1}\right)=0$, and so $u\left(M_{1}\right) \cap\left(M_{2} \cap q_{2} v\left(\Upsilon_{1}\right)\right)=u\left(M_{1}\right) \cap q_{2} v\left(\Upsilon_{1}\right)=u\left(M_{1}\right) \cap w\left(N_{1}\right)=0$. Therefore $\left(u\left(M_{1}\right) \cap M_{2}\right) \cap q_{2} v\left(\Upsilon_{1}\right)=0$, which contradicts the subdirect irreducibility of $M_{2}=q_{2}(A e)$, completing the proof.

## References

[1] M. Ikeda: A characterization of quasi-Forbenius rings, Osaka Math. J., 4, 203209 (1952).
[2] Yutaka Kawada: On similarities and isomorphisms of ideals in a ring, J. Math. Soc. Japan, 9, 374-380 (1957).
[3] K. Morita and H. Tachikawa: Character modules, submodules of a free module, and quasi-Frobenius rings, Math. Zeitschr., 65, 414-428 (1956).
[4] K. Morita, Yutaka Kawada, and H. Tachikawa: On injective modules, Math. Zeitschr., 68, 217-226 (1957).

