51. A Remark on a Paper of Greub and Rheinboldt

By Masahiro Nakamura
Osaka Gakugei Daigaku
(Comm. by K. Kunugi, m.J.A., April 12, 1960)

1. In the first place, it will be shown by an elementary inspection the following

Theorem 1. For $0<m<M$, the following inequality holds true;

$$
\begin{equation*}
\int_{m}^{M} t d \mu(t) \cdot \int_{m}^{M} \frac{1}{t} d \mu(t) \leqq \frac{(M+m)^{2}}{4 M m} \tag{1}
\end{equation*}
$$

for any positive Stieltjes measure μ on $[m, M]$ with $\|\mu\|=1$.
Consider a line-segment C and a curve D figured in (t, s)-plane by (t, t) and $\left(t, \frac{1}{t}\right)$ respectively (for $m \leqq t \leqq M$). Putting

$$
d=\int_{m}^{M} t d \mu(t), \quad e=\int_{m}^{M} \frac{1}{t} d \mu(t),
$$

(d, d) is the centre of gravity of C weighted by μ, and (d, e) is of D weighted by the same μ. Clearly, (d, d) lies on C, and (d, e) lies in the bow shaped territory bounded below by D and above by its string connected ($m, 1 / m$) and ($M, 1 / M$) or the line figured by $(t, g(t)$) where

$$
g(t)=\frac{(M+m)-t}{M m}
$$

It is now obvious that the left hand side of (1), say c, is the product of the s-coordinates of two centres of gravity. Hence (d, c) lies below a curve figured by $(t, h(t)$) with

$$
h(t)=t g(t)=\frac{(M+m) t-t^{2}}{M m} .
$$

Therefore, c amounts its maximum, if possible, when

$$
M m h^{\prime}(t)=(M+m)-2 t=0,
$$

or $t=(M+m) / 2$. Thus,

$$
c \leqq h\left(\frac{M+m}{2}\right)=\frac{(M+m)^{2}}{4 M m}
$$

which proves (1).
Incidentally, it is obvious that c attains its maximum when

$$
\mu(\{m\})=\mu(\{M\})=\frac{1}{2}
$$

Theorem 2. If f is a continuous function defined on a compact set satisfying

$$
\begin{equation*}
0<m \leqq f(x) \leqq M \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\int_{x} f(x) d \mu \cdot \int_{x} \frac{1}{f(x)} d \mu \leqq \frac{(M+m)^{2}}{4 M m} \tag{3}
\end{equation*}
$$

for any positive Borel measure μ with the total measure one.
Since Theorem 2 is a verbal version of Theorem 1, the proof will be omitted here.
2. Recently W. Greub and W. Rheinboldt [2] proved, as a generalization of an inequality of Kantorovič, the following

Theorem 3. If A is a self-adjoint operator defined on a Hilbert space satisfying

$$
\begin{equation*}
0<m \leqq A \leqq M, \tag{4}
\end{equation*}
$$

then for any vector x

$$
\begin{equation*}
(A x, x)\left(A^{-1} x, x\right) \leqq \frac{(M+m)^{2}}{4 M m}(x, x)^{2} \tag{5}
\end{equation*}
$$

It is easy to see by the Gelfand representation of the C^{*}-algebra generated by A and the identity that Theorem 3 is implied by Theorem 1 or Theorem 2 (for the representations of operator algebras, cf. J. Dixmier [1]), since (4) implies (2) when f corresponds to A by the representation or since A corresponds to t on $[m, M]$ by the representation, and since $(A x, x)$ defines a normalized measure on the spectrum for a normalized vector x. Also, conversely, it is not hard to see by the operator representation cannonically induced by a normalized measure μ, that Theorem 1 is a consequence of Theorem 3 , since μ is representable by $(A x, x)$ for some x with $\|x\|=1$. Hence, Theorems 1, 2 and 3 are mutally equivalent.

References

[1] J. Dixmier: Les Algèbres d'Opérateurs dans l'Espace Hilbertien, Paris (1957).
[2] W. Greub and W. Rheinboldt: On a generalization of an inequality of L. V. Kantorovich, Proc. Amer. Math. Soc., 10, 407-415 (1959).

