111. On Certain Triangulated Manifolds

By Masahisa Adachi
Mathematical Institute, Nagoya University
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1960)

V. Rohlin and A. Schwarz [5] and R. Thom [7] defined the combinatorial Pontrjagin classes of triangulated manifolds and proved the existence of triangulated 8-dimensional manifolds which admit no differentiable structures compatible ${ }^{1)}$ with their given triangulations. A corresponding result for triangulated 16-dimensional manifolds was proved by K. Srinivasacharyulu [6]. The purpose of this note is to prove the corresponding theorems for the dimensions of the form $4 k(2 \leqq k \leqq 14, k \neq 3)$.

In $\S 1$ certain triangulated $4 k$-dimensional manifolds are constructed and studied. In $\S 2$ the theorem is proved.

Our method is quite analogous to that of R. Thom, and closely related with J. Milnor [4]. The word n-manifold will always be used for a compact oriented n-dimensional manifold without boundary. The word "differentiable" will be used to mean "differentiable of class C^{∞} ".

1. Let us consider two differentiable mappings of spheres into rotation groups:

$$
f_{1}: S^{m} \rightarrow S O(n+1), \quad f_{2}: S^{n} \rightarrow S O(m+1)
$$

For these mappings Milnor [4] defined the differentiable ($m+n+1$)manifold $M\left(f_{1}, f_{2}\right)$ with the following properties:
i) If the mapping f_{1} carries S^{m} into the subgroup $S O(n) \subset$ $S O(n+1)$, then $M\left(f_{1}, f_{2}\right)$ is a topological sphere.
ii) There exists a differentiable bounded manifold ${ }^{2)} W$ whose boundary is $M\left(f_{1}, f_{2}\right)$.
Hereafter we assume that
(*) if $m=n$, the mappings f_{1}, f_{2} both carry S^{m} into the subgroup $S O(m) \subset S O(m+1)$.
Then $M\left(f_{1}, f_{2}\right)$ is always a topological ($m+n+1$)-sphere. ${ }^{3)}$ Furthermore, the differentiable $(m+n+1)$-manifold $M\left(f_{1}, f_{2}\right)$ has a C^{∞}-triangulation (L, g), and this C^{∞}-triangulation can be extended to a C^{∞}-triangulation (K, f) of the differentiable ($m+n+2$)-manifolds W. Then L is a combinatorial manifold and K is a combinatorial bounded manifold whose boundary is L (cf. Whitehead [8], Milnor [2]).

1) For the precise definition, see Whitehead [8], Milnor [2].
2) bounded manifold=variété à bord.
3) Cf. Milnor [4].

Let T be the space formed from the manifold W by attaching a cone C over the boundary $M\left(f_{1}, f_{2}\right)$. Since $M\left(f_{1}, f_{2}\right)$ is a topological $(m+n+1)$-sphere, it follows that T is an $(m+n+1)$-manifold. The triangulation (K, f) of W gives rise to a triangulation (J, h) of the ($m+n+2$)-manifold T. Then we have the following commutative diagram:

where $|L|,|K|,|J|$ are the underlying topological spaces of the simplicial complexes L, K, J, and $i_{1}, \bar{i}_{1}, i_{2}, \bar{i}_{2}$ are the inclusion maps, and $M=M\left(f_{1}, f_{2}\right)$.

Hereafter we assume that

$$
\begin{aligned}
& m=4 r-1, \quad n=4(k-r)-1 \\
& 1 \leqq r \leqq k-r .
\end{aligned}
$$

We shall study on the triangulated manifold ($J, h ; T$).
a) Cohomology of T

The cohomology groups $H^{i}(T, Z)$ are isomorphic to the cohomology groups $H^{i}(W, M ; Z)(i>0)$. It follows from Milnor [4] that

$$
H^{i}(T, Z)=\left\{\begin{array}{l}
Z, i=0,4 r, 4(k-r), 4 k \\
0, \text { otherwise }
\end{array}\right.
$$

We shall denote by α, β the generators in the dimension $4 r, 4(k-r)$, respectively, then $\alpha \beta$ is the generator in the dimension $4 k$.
b) Index of T

The index $I(T)$ of T is equal to zero. In case $m \neq n$, it is trivial. In case $m=n$, it follows from the assumption (*) (cf. Milnor [4, Lemma 4]).
c) Combinatorial Pontrjagin classes of J

Let $i_{2}: K \rightarrow J$ be the inclusion map. Then the homomorphisms $\left(i_{2}\right)^{*}: H^{q}(J, G) \rightarrow H^{q}(K, G)$ induced by i_{2} are bijective for $0 \leqq q<4 k$ for any abelian group G. Since L is a triangulated ($4 k-1$)-sphere, j^{*} : $H^{q}(K, L ; G) \rightarrow H^{q}(K, G)$ are bijective for $0<q<4 k-1$. Moreover we have $j^{*}: H^{q}\left(J, J_{0} ; G\right) \cong H^{q}(J, G)$ for $q>0$, where $\left(J_{0}, h \mid J_{0}\right)$ is the triangulation of the cone C induced from (J, h). Let Q be the ring of rational numbers. As is remarked in Milnor [3, Chapter XVI, 4], for bounded homology manifold (K, L) we can define the cohomology classes $l_{i}(K, L) \in H^{4 i}(K, L ; Q)$ and the combinatorial Pontrjagin classes $p_{i}(K, L) \in H^{4 i}(K, L ; Q)$ in the same way as for the homology manifold. We shall denote

$$
\begin{gathered}
l_{i}(K)=j^{*}\left(l_{i}(K, L)\right), \\
p_{i}(K)=j^{*}\left(p_{i}(K, L)\right) .
\end{gathered}
$$

Let $p_{i}(J) \in H^{4 i}(J, Q)$ be the i-th combinatorial Pontrjagin class of the homology manifold J. Then we have

Lemma 1. For $0<i<k$,

$$
\left(i_{2}\right)^{*}\left(p_{i}(J)\right)=p_{i}(K)
$$

Proof. We shall prove the Lemma using the definitions and the notations of Milnor [3, Chapter XVI]. By the definition of the combinatorial Pontrjagin classes, $p_{i}(J)$ and $p_{i}(K, L)$ are polynomials of $l_{j}(J) \in H^{4 j}(J, Q)$ and $l_{j}(K, L) \in H^{4 j}(K, L ; Q), 1 \leqq j \leqq i$, respectively. So it is sufficient for us to prove

$$
\left(i_{2}\right)^{*}\left(l_{i}(J)\right)=l_{i}(K)=j^{*}\left(l_{i}(K, L)\right), \quad \text { for } \quad 0<i<k
$$

Let $\sum^{4 k-4 i}$ be the boundary of a ($4 k-4 i+1$)-simplex, and σ be the fundamental cohomology class of $\sum^{4 k-4 i}$. Let μ, ν be the fundamental homology class of (K, L) and J, respectively. By the definition of $l_{i}(K, L)$, for any simplicial map $\widetilde{\varphi}:(K, L) \rightarrow\left(\sum^{4 k-4 i}, a\right)$, where a is a vertex of $\sum^{4 k-4 i}$, we have

$$
<l_{i}(K, L)^{\smile}(\widetilde{\varphi})^{*}(\sigma), \mu>=I(\widetilde{\varphi}) .
$$

Then there exists a simplicial map $\tilde{\psi}$ such that the following diagram is commutative:

$$
\begin{gathered}
(K, L) \xrightarrow{\widetilde{\varphi}}\left(\sum^{4 i k-4 i}, a\right) \\
\widetilde{i_{2}} \\
\\
\\
\left(J, J_{0}\right),
\end{gathered}
$$

where \tilde{i}_{2} is the inclusion map. Corresponding to this diagram, we have also the following commutative diagram:

Then we have

$$
\begin{aligned}
& <\left(j^{*}\right)^{-1} \circ\left(i_{2}\right)^{*}\left(l_{i}(J)\right)^{\smile}(\widetilde{(})^{*}(\sigma), \mu> \\
= & <\left(\widetilde{i_{2}}\right)^{*} \circ\left(j^{*}\right)^{-1}\left(l_{i}(J)\right)^{\smile}\left(\tilde{i}_{2}\right)^{*} \circ(\widetilde{\psi})^{*}(\sigma), \mu> \\
= & <\left(\widetilde{i_{2}}\right)^{*}\left\{\left(j^{*}\right)^{-1}\left(l_{i}(J)\right)^{\smile}(\widetilde{\psi})^{*}(\sigma)\right\}, \mu> \\
= & <\left(j^{*}\right)^{-1}\left(l_{i}(J)\right)^{\smile}(\widetilde{\psi})^{*}(\sigma),\left(\tilde{i_{2}}\right)_{*}(\mu)> \\
= & <\left(j^{*}\right)^{-1}\left(l_{i}(J)\right)^{\smile}\left(j^{*}\right)^{-1} \circ \psi^{*}(\sigma),\left(\widetilde{i_{2}}\right)_{*}(\mu)> \\
= & <\left(j^{*}\right)^{-1}\left\{l_{i}(J) \smile \psi^{*}(\sigma)\right\},\left(\tilde{i}_{2}\right)_{*}(\mu)> \\
= & <l_{i}(J)^{\smile} \psi^{*}(\sigma),\left(j_{*}\right)^{-1} \circ\left(\widetilde{i_{2}}\right)_{*}(\mu)> \\
= & <l_{i}(J)^{\smile} \psi^{*}(\sigma), \nu> \\
= & I(\psi) .
\end{aligned}
$$

By the definition of $I(\widetilde{\varphi}), I(\psi)$, we have $I(\widetilde{\varphi})=I(\psi)$. By the uniqueness of $l_{i}(K, l)$, we obtain the assertion.
2. First recall the index theorem of Hirzebruch [1]. If V is
a differentiable $4 k$-manifold having Pontrjagin classes $p_{1}, p_{2}, \cdots, p_{k}$, then the index $I(V)$ is equal to $L_{k}\left(p_{1}, p_{2}, \cdots, p_{k}\right)$ [V], where L_{k} is a certain polynomial. The coefficients s_{k} of p_{k} in L_{k} are expressed in terms of the Bernoulli numbers B_{k} as follows:

$$
s_{k}=\frac{2^{2 k}\left(2^{2 k-1}-1\right) B_{k}}{(2 k)!}
$$

Let $p_{r}: \pi_{4 r-1}(S O(q)) \rightarrow Z$ be the Pontrjagin homomorphisms defined in Milnor [4].

Lemma 2 (Milnor [4]). If $q>\mathbf{2 r}$, then there exists an element $(f) \in \pi_{4 r-1}(S O(q))$ such that $p_{r}(f) \neq 0$ and the prime factors of $p_{r}(f)$ are all less than $2 r$.

Combining Lemmas 1, 2, we have
Theorem 1. Suppose that r is an integer satisfying

$$
k / 3<r \leqq k / 2
$$

If the denominator of $s_{r} s_{k-r} / s_{k}$ contains a prime factor $\geqq 2(k-r)$, then there exists a triangulated $4 k$-manifold T which admits no differentiable structures compatible with its given triangulation (J, h).

Proof. Suppose that the triangulated manifold ($J, h ; T$) admits a differentiable structure \mathscr{D}_{J} compatible with the triangulation (J, h). Then \mathfrak{D}_{J} may define another differentiable structure \mathfrak{D}_{K} on the underlying manifold of W compatible with the triangulation (K, f). We denote this differentiable manifold by W^{\prime}. Let

$$
\begin{aligned}
& \rho^{*}: H^{q}(T, Z) \rightarrow H^{q}(T, Q) \\
& \rho^{*}: H^{q}(W, Z) \rightarrow H^{q}(W, Q)
\end{aligned}
$$

be the canonical homomorphisms induced by the injection $\rho: Z \rightarrow Q$ of the coefficient groups. Then, by the compatibility of the combinatorial Pontrjagin classes, we have

$$
\begin{aligned}
& h^{*} \circ \rho^{*}\left(p_{i}(T)\right)=p_{i}(J) \\
& f^{*} \circ \rho^{*}\left(p_{i}\left(W^{\prime}\right)\right)=p_{i}(K)=f^{*} \circ \rho^{*}\left(p_{i}(W)\right)
\end{aligned}
$$

However, by Milnor [4] we know

$$
\begin{aligned}
& p_{r}(W)= \pm p_{r}\left(f_{1}\right) \cdot\left(i_{2}\right) *(\alpha) \\
& p_{k-r}(W)= \pm p_{k-r}\left(f_{2}\right) \cdot\left(i_{2}\right)^{*}(\beta)
\end{aligned}
$$

Therefore, by Lemma 1 we have

$$
\begin{aligned}
h^{*} \circ \rho^{*}\left(p_{r}(T)\right) & =p_{r}(J)=\left(i_{2}\right)^{*-1}\left(p_{r}(K)\right) \\
& =\left(i_{2}\right)^{-1} \circ f^{*} \circ \rho^{*}\left(p_{r}(W)\right) \\
& =h^{*} \circ\left(i_{2}\right)^{*-1} \circ \rho^{*}\left(\pm p_{r}\left(f_{1}\right) \cdot\left(i_{2}\right)^{*}(\alpha)\right) \\
& = \pm p_{r}\left(f_{1}\right) \cdot h^{*} \circ \rho^{*}(\alpha) .
\end{aligned}
$$

Since $H^{*}(T, Q)$ has no torsion and h^{*} is bijective, we have

$$
p_{r}(T)= \pm p_{r}\left(f_{1}\right) \cdot \alpha
$$

Similarly we have

$$
p_{k-r}(T)= \pm p_{k-r}\left(f_{2}\right) \cdot \beta
$$

Using the index theorem

$$
I(T)=L_{k}\left(p_{1}, p_{2}, \cdots, p_{k}\right)[T], \quad p_{i}=p_{i}(T),
$$

it follows that ${ }^{4)}$

$$
\begin{aligned}
& p_{k}[T]= \pm \frac{s_{r} s_{k-r}-s_{k}}{s_{k}} \cdot p_{r} p_{k-r}[T], \\
& p_{k}[T]= \pm \frac{s_{r} s_{k-r}-s_{k}}{s_{k}} \cdot p_{r}\left(f_{1}\right) p_{k-r}\left(f_{2}\right), \\
& p_{k}[T]= \pm \frac{s_{r} s_{k-r}}{s_{k}} \cdot p_{r}\left(f_{1}\right) p_{k-r}\left(f_{2}\right), \quad \bmod 1 .
\end{aligned}
$$

By Lemma 2, for $k / 3<r$, we can take f_{1}, f_{2} such that $p_{r}\left(f_{1}\right) p_{k-r}\left(f_{2}\right) \neq 0$ and the prime factors of $p_{r}\left(f_{1}\right) p_{k-r}\left(f_{2}\right)$ are all less than $2(k-r)$. If $k / 3<r \leqq k / 2$ and the denominator of $s_{r} s_{k-r} / s_{k}$ contains prime factor $\geqq 2(k-r), p_{k}[T]$ is not an integer. This is a contradiction. Thus we have the theorem.

Theorem 2. For $2 \leqq k \leqq 14, k \neq 3$, there exist triangulated $4 k$ manifolds ($J, h ; T$) which admit no differentiable structures compatible with their given triangulations (J, h).

Proof. For such k, it is checked by Milnor [4] that there exists r such that the assumption of Theorem 1 is satisfied.

References

[1] F. Hirzebruch: Neue topologische Methoden in der algebraischen Geometorie, Springer (1956).
[2] J. Milnor: On the relationship between differentiable manifolds and combinatorial manifolds (mimeographed note), Princeton University (1956).
[3] J. Milnor: Lectures on characteristic classes, Princeton University (1958).
[4] J. Milnor: Differentiable structures on spheres, Amer. J. Math., 81, 962-972 (1959).
[5] V. Rohlin and A. Schwarz: The combinatorial invariance of Pontrjagin classes (in Russian), Doklady Akad. Nauk S.S.S.R., 114, 490-493 (1957).
[6] K. Srinivasacharyulu: Sur certaines variétés triangulable, C. R. Acad. Sci. Paris, 250, 2316-2317 (1960).
[7] R. Thom: Les classes caractéristiques de Pontrjagin des variétés triangulées, Symp. Intern. Topologia Algebrica, 54-67 (1958).
[8] J. H. C. Whitehead: On C^{1}-complexes, Ann. of Math., 41, 809-824 (1940).

[^0]
[^0]: 4) The coefficients of $p_{r} p_{k-r}$ in L_{k} are calculated in Milnor [4].
