110. On the Boundedness of Solutions of DifferenceDifferential Equations

By Shohei Sugiyama
Department of Mathematics, School of Science and Engineering,
Waseda University, Tokyo
(Comm. by Z. Suetuna, m.J.A., Oct. 12, 1960)

Introduction. In their paper [1], R. Bellman and K. L. Cooke have defined a kernel function $K(t, s)$ which has been used to obtain several theorems concerning the stability and boundedness of solutions of difference-differential equations with perturbed terms.

In the present paper, we shall establish some theorems on the boundedness of solutions of difference-differential equations which are, in general, not linear.

1. For the sake of simplicity, we consider an equation

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t)+B(t) x(t-1)+w(t) \quad(0 \leqq t<\infty) \tag{1.1}
\end{equation*}
$$

under the conditions

$$
\begin{equation*}
x(t-1)=\varphi(t) \quad(0 \leqq t<1) \quad \text { and } \quad x(0)=x_{0} . \tag{1.2}
\end{equation*}
$$

It is supposed that $A(t), B(t)$, and $w(t)$ are continuous for $0 \leqq t<\infty$, $\varphi(t)$ is continuous for $0 \leqq t<1$, and $\lim _{t \rightarrow 1-0} \varphi(t)=\varphi(1-0)$ exists. Then, it is well known that there exists a unique solution of (1.1) under the initial conditions (1.2) for $0 \leqq t<\infty$.

Now, we define a transformation

$$
y(t)= \begin{cases}x(t)-\varphi(t+1) & (-1 \leqq t<0), \tag{1.3}\\ x(t)-x_{0} & (0 \leqq t<\infty) .\end{cases}
$$

Then, by (1.3), (1.1) is reduced to the equation with respect to y, that is,

$$
\begin{equation*}
y^{\prime}(t)=A(t) y(t)+B(t) y(t-1)+w_{1}(t) \tag{1.4}
\end{equation*}
$$

under the condition $y(t-1) \equiv 0(0 \leqq t \leqq 1)$, where $w_{1}(t)$ is as follows:

$$
w_{1}(t)= \begin{cases}x_{0} A(t)+B(t) \varphi(t)+w(t) & (0 \leqq t<1), \\ x_{0} A(t)+x_{0} B(t)+w(t) & (1 \leqq t<\infty)\end{cases}
$$

By using the same kernel function $K(t, s)$ as defined in [1], the unique solution $y=y(t)$ of (1.4) under the condition $y(t-1) \equiv 0$ on $0 \leqq t \leqq 1$ is represented by the integral

$$
\begin{equation*}
y(t)=\int_{0}^{t} K(t, s) w_{1}(s) d s \quad(0 \leqq t<\infty) .^{1)} \tag{1.5}
\end{equation*}
$$

Thus, it follows from (1.3) that

$$
\begin{equation*}
x(t)=x_{0}+\int_{0}^{t} K(t, s) w_{1}(s) d s \quad(0 \leqq t<\infty) \tag{1.6}
\end{equation*}
$$

1) The method to obtain (1.5) is just the same as in [1].

Especially, if $w(t) \equiv 0$ on $0 \leqq t<\infty$ and $\varphi(t) \equiv 0$ on $0 \leqq t<1$, the equation (1.6) leads us to

$$
x(t)=\left\{\begin{array}{l}
x_{0}\left(1+\int_{0}^{t} K(t, s) A(s) d s\right) \tag{1.7}\\
x_{0}\left(1+\int_{0}^{1} K(t, s) A(s) d s+\int_{0}^{t} K(t, s)(A(s)+B(s)) d s \quad(1 \leqq t<\infty) .\right.
\end{array}\right.
$$

2. Now, we consider a perturbed equation

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t)+B(t) x(t-1)+f(t, x(t), x(t-1)) \tag{2.1}
\end{equation*}
$$

for $0 \leqq t<\infty$ under the conditions

$$
\begin{equation*}
x(t-1)=\varphi(t) \quad(0 \leqq t<1) \quad \text { and } \quad x(0)=x_{0} \tag{2.2}
\end{equation*}
$$

The kernel function for the equation

$$
\begin{equation*}
x^{\prime}(t)=A(t) x(t)+B(t) x(t-1) \tag{2.3}
\end{equation*}
$$

will be denoted by $K(t, s)$. It is supposed that the existence and uniqueness of the solution of (2.1) with (2.2) are guaranteed for $0 \leqq$ $t<\infty$. Then the following theorem will be established.

Theorem 1. In the equation (2.1) we suppose that the following conditions are satisfied:
(i) the unique solution $x_{0}(t)$ of (2.3) with (2.2) is bounded; ;'
(ii) $f(t, x, y)$ is continuous and

$$
\begin{equation*}
|f(t, x, y)| \leqq h(t)(|x|+|y|) \tag{2.4}
\end{equation*}
$$

for $0 \leqq t<\infty,|x|<\infty,|y|<\infty$, where $h(t)$ is continuous for $0 \leqq t<\infty$ and

$$
\begin{equation*}
\int_{0}^{\infty} h(t) d t<\infty ; \tag{2.5}
\end{equation*}
$$

(iii) the kernel function $K(t, s)$ is bounded, that is,

$$
\begin{equation*}
|K(t, s)| \leqq c \quad(0 \leqq s \leqq t<\infty) ; \tag{2.6}
\end{equation*}
$$

(iv) $\varphi(t)$ is continuous for $0 \leqq t<1$, and $\lim _{t \rightarrow 1-0} \varphi(t)$ exists.

Then, the solution of (2.1) with (2.2) is bounded for $0 \leqq t<\infty$.3)
Proof. By means of the kernel function $K(t, s)$, it follows from (1.5) that the solution of (2.1) with (2.2) is represented by

$$
x(t)=x_{0}(t)+\int_{0}^{t} K(t, s) f(s, x(s), x(s-1)) d s
$$

Now we have to consider two cases:
I. The case $0 \leqq t \leqq 1$. It follows from (2.2), (2.4), and (2.6) that

$$
\begin{aligned}
|x(t)| & \leqq\left|x_{0}(t)\right|+\int_{0}^{t}|K(t, s)||f(s, x(s), \varphi(s))| d s \\
& \leqq c_{1}+c \int_{0}^{t} h(s)(|x(s)|+|\varphi(s)|) d s
\end{aligned}
$$

[^0]$$
\leqq c_{2}+c \int_{0}^{t} h(s)|x(s)| d s
$$
where c_{1} is the upper bound for $\left|x_{0}(t)\right|$ and
$$
c_{2}=c_{1}+c \int_{0}^{1} h(s)|\varphi(s)| d s
$$

This inequality leads us to

$$
|x(t)| \leqq c_{2} \exp \left(c \int_{0}^{t} h(s) d s\right) \leqq c_{2} \exp \left(c \int_{0}^{\infty} h(s) d s\right)
$$

which implies that $|x(t)|$ is bounded.
II. The case $1 \leqq t<\infty$. It follows by (2.2), (2.4), and (2.6) that

$$
\begin{aligned}
|x(t)| \leqq\left|x_{0}(t)\right| & +\int_{0}^{1}|K(t, s)||f(s, x(s), \varphi(s))| d s \\
& +\int_{1}^{t}|K(t, s)||f(s, x(s), x(s-1))| d s \\
\leqq & c_{2}+c \int_{0}^{t}(h(s)+h(s+1))|x(s)| d s .
\end{aligned}
$$

This inequality leads us to

$$
|x(t)| \leqq c_{2} \exp \left(c \int_{0}^{t}(h(s)+h(s+1)) d s\right) \leqq c_{2} \exp \left(2 c \int_{0}^{\infty} h(s) d s\right)
$$

which implies the boundedness of $|x(t)|$.
3. We shall now establish another boundedness theorem without using any kernel functions. The equation to be discussed here is as follows:

$$
\begin{equation*}
x^{\prime}(t)=f(t, x(t), x(t-1)) \quad(0 \leqq t<\infty) \tag{3.1}
\end{equation*}
$$

under the initial conditions

$$
\begin{equation*}
x(t-1)=\varphi(t) \quad(0 \leqq t<1) \quad \text { and } \quad x(0)=x_{0} \tag{3.2}
\end{equation*}
$$

where $\varphi(t)$ is a function the same as before. It is supposed that the existence of solutions for $0 \leqq t<\infty$ is guaranteed.

Theorem 2. We suppose that in the equation (3.1) with (3.2), $f(t, x, y)$ satisfies the following conditions:
(i) $f(t, x, y)$ is continuous for $0 \leqq t<\infty,|x|<\infty,|y|<\infty$;
(ii)

$$
\begin{equation*}
|f(t, x, y)| \leqq h(t)(|x|+|y|) \tag{3.3}
\end{equation*}
$$

for $0 \leqq t<\infty,|x|<\infty,|y|<\infty$;
(iii) $h(t)$ is continuous for $0 \leqq t<\infty$ and

$$
\begin{equation*}
\int_{0}^{\infty} h(t) d t<\infty . \tag{3.4}
\end{equation*}
$$

Then, any solution of (3.1) with (3.2) is bounded for $0 \leqq t<\infty$.
Proof. Let $x=x(t)$ be a solution of (3.1) with (3.2). Then, by means of the initial condition $x(0)=x_{0}$, it follows from (3.1) that

$$
\begin{equation*}
x(t)=x_{0}+\int_{0}^{t} f(s, x(s), x(s-1)) d s \quad(0 \leqq t<\infty) \tag{3.5}
\end{equation*}
$$

I. The case $0 \leqq t \leqq 1$. It follows from (3.2), (3.3), (3.5) that

$$
\begin{aligned}
|x(t)| & \leqq\left|x_{0}\right|+\int_{0}^{t}|f(s, x(s), \varphi(s))| d s \\
& \leqq\left|x_{0}\right|+\int_{0}^{t} h(s)(|x(s)|+|\varphi(s)|) d s \\
& \leqq c_{3}+\int_{0}^{t} h(s)|x(s)| d s
\end{aligned}
$$

where

$$
c_{3}=\left|x_{0}\right|+\int_{0}^{1} h(s)|\varphi(s)| d s
$$

which leads us to the inequality

$$
\begin{equation*}
|x(t)| \leqq c_{3} \exp \left(\int_{0}^{t} h(s) d s\right) \leqq c_{3} \exp \left(\int_{0}^{\infty} h(s) d s\right) \tag{3.6}
\end{equation*}
$$

II. The case $1 \leqq t<\infty$. It follows from (3.2), (3.3), (3.5) that

$$
\begin{aligned}
|x(t)| & \leqq\left|x_{0}\right|+\int_{0}^{1}|f(s, x(s), \varphi(s))| d s+\int_{1}^{t}|f(s, x(s), x(s-1))| d s \\
& \leqq\left|x_{0}\right|+\int_{0}^{1} h(s)(|x(s)|+|\varphi(s)|) d s+\int_{1}^{t} h(s)(|x(s)|+|x(s-1)|) d s \\
& \leqq c_{3}+\int_{0}^{t}(h(s)+h(s+1))|x(s)| d s
\end{aligned}
$$

which leads us to the inequality

$$
\begin{equation*}
|x(t)| \leqq c_{3} \exp \left(\int_{0}^{t}(h(s)+h(s+1)) d s\right) \leqq c_{3} \exp \left(2 \int_{0}^{\infty} h(s) d s\right), \tag{3.7}
\end{equation*}
$$

which implies together with (3.6) the boundedness of $|x(t)|$.
It is to be noted that the inequalities (3.6) and (3.7) show us not only the boundedness but also the stability of solutions, provided that $\left|x_{0}\right|$ and $|\varphi(t)|$ are sufficiently small.
4. As for difference-differential equations of neutral type, we shall establish a boundedness theorem, for which the equation to be discussed here is

$$
\begin{equation*}
x^{\prime}(t)=f\left(t, x(t), x(t-1), x^{\prime}(t-1)\right) \tag{4.1}
\end{equation*}
$$

under the initial conditions
(4.2) $\quad x(t-1)=\varphi(t)(0 \leqq t<1) \quad$ and $\quad x(0)=x_{0}$,
where $f(t, x, y, z)$ is continuous and bounded, $|f(t, x, y, z)| \leqq M$, for $0 \leqq t<\infty,|x|<\infty,|y|<\infty,|z|<\infty$, and $\varphi(t)$ is a given function as before, continuously differentiable for $0<t<1, \lim _{t \rightarrow 1-0} \varphi^{\prime}(t), \lim _{t \rightarrow+0} \varphi^{\prime}(t)$ exist.

It is supposed that the existence and uniqueness theorems are guaranteed for $0 \leqq t<\infty$.

Theorem 3. In the equation (4.1) with (4.2) we suppose that the following conditions are satisfied:
(i) $|f(t, x, y, z)| \leqq h(t)(|x|+|y|+|z|)$ for $0 \leqq t<\infty, \quad|x|<\infty$, $|y|<\infty,|z|<\infty$;
(ii)

$$
\int_{0}^{\infty} h(t) d t<\infty .
$$

Then, the unique solution of (4.1) with (4.2) is bounded for $0 \leqq$ $t<\infty$.

Proof. I. The case $0 \leqq t \leqq 1$. If follows from (4.2) and (i), (ii) that

$$
\begin{aligned}
|x(t)| & \leqq\left|x_{0}\right|+\int_{0}^{t}\left|f\left(s, x(s), \varphi(s), \varphi^{\prime}(s)\right)\right| d s \\
& \leqq\left|x_{0}\right|+\int_{0}^{t} h(s)\left(|x(s)|+|\varphi(s)|+\left|\varphi^{\prime}(s)\right|\right) d s \\
& \leqq c_{4}+\int_{0}^{t} h(s)|x(s)| d s
\end{aligned}
$$

where

$$
c_{4}=\left|x_{0}\right|+\int_{0}^{1} h(s)\left(|\varphi(s)|+\left|\varphi^{\prime}(s)\right|\right) d s
$$

II. The case $1 \leqq t<\infty$. It follows from (4.2) and (i), (ii) that

$$
\begin{aligned}
|x(t)| \leqq\left|x_{0}\right| & +\int_{0}^{1}\left|f\left(s, x(s), \varphi(s), \varphi^{\prime}(s)\right)\right| d s+\int_{1}^{t}\left|f\left(s, x(s), x(s-1), x^{\prime}(s-1)\right)\right| d s \\
\leqq\left|x_{0}\right| & +\int_{0}^{1} h(s)\left(|x(s)|+|\varphi(s)|+\left|\varphi^{\prime}(s)\right|\right) d s \\
& +\int_{1}^{t} h(s)\left(|x(s)|+|x(s-1)|+\left|x^{\prime}(s-1)\right|\right) d s
\end{aligned}
$$

Since $\left|x^{\prime}(t)\right| \leqq M$, we have

$$
u(t) \leqq c_{5}+\int_{0}^{t}(h(s)+h(s+1)) u(s) d s
$$

where $u(t)=|x(t)|+\left|x^{\prime}(t)\right|$ and $c_{5}=c_{4}+M$. Then it follows that

$$
|x(t)| \leqq c_{6} \exp \left(2 \int_{0}^{\infty} h(s) d s\right) \quad(0 \leqq t<\infty)
$$

where $c_{6}=\operatorname{Max}\left(c_{4}, c_{5}\right)$, which implies the boundedness of $|x(t)|$.

Reference

[1] R. Bellman and K. L. Cooke: Stability theory and adjoint operators for linear differential-difference equations, Trans. Amer. Math. Soc., 92, 470-500 (1959).

[^0]: 2) A sufficient condition that the hypothesis (i) is satisfied is that $A(t)$ and $B(t)$ are absolutely integrable for $0 \leqq t<\infty$, which will be established in Theorem 3.
 3) Here, the upper bound of $|x(t)|$ may depend on x_{0} and $\varphi(t)$.
