4. On Poisson Integrals

By Teruo Ikegami
University of Osaka Prefecture

(Comm. by K. Kunugi, m.J.A., Jan. 12, 1961)

1. Let $f(t)$ be an integrable function on the interval $[-\pi, \pi]$, then we can consider the Poisson integral

$$
\begin{equation*}
u\left(e^{t \theta}\right)=\frac{1}{2 \pi} \int_{-x}^{x} f(t) \frac{1-r^{2}}{1+r^{2}-2 r \cos (t-\theta)} d t \quad(0 \leq r<1,0 \leq \theta<2 \pi) . \tag{1}
\end{equation*}
$$

The following theorem concerning the Poisson integral is well known: if $f(t)$ has a derivative at $t=\theta_{0}$, then we have $\lim _{r \rightarrow 1} \frac{\partial u\left(r e^{i \theta_{0}}\right)}{\partial \theta}=f^{\prime}\left(\theta_{0}\right)$. The purpose of this paper is to investigate whether this theorem holds for other derivatives. As

$$
\begin{equation*}
\frac{\partial u\left(r e^{i \theta}\right)}{\partial \theta}=\frac{-1}{2 \pi} \int_{-\pi}^{\pi} f(t) \frac{\partial}{\partial t}\left(\frac{1-r^{2}}{1+r^{2}-2 r \cos (t-\theta)}\right) d t, \tag{2}
\end{equation*}
$$

we shall consider the integrals of this type.
2. We shall begin with the positive result.

Theorem 1. If $f(t)$ has a symmetric Borel derivative ${ }^{1)}$ at θ_{0}, then we have $\lim _{r \rightarrow 1} \frac{\partial}{\partial \theta} u\left(r e^{i \theta_{0}}\right)=B_{s}^{\prime} f\left(\theta_{0}\right)$.

Proof. Without loss of generality, we can assume that $\theta_{0}=0$ and $B_{s}^{\prime} f\left(\theta_{0}\right)=0$. If we set $F(t)=\int_{t}^{\pi} \frac{f(t)-f(-t)}{2 t} d t, F(h)=F(0)+h \varepsilon(h)$, it follows from the hypothesis that for every $\varepsilon>0$ there exists δ such that $0 \leq h<\delta$ implies $|\varepsilon(h)|<\varepsilon$. Fixing δ we divide the integral (2) into three parts:

$$
\frac{-1}{2 \pi}\left[\int_{-\pi}^{-\delta}+\int_{-\delta}^{s}+\int_{0}^{\pi}\right]=\frac{-1}{2 \pi}\left(I_{1}+I_{2}+I_{3}\right) .
$$

Integration by parts leads to the evaluation of I_{3},

$$
\left|I_{3}\right| \leq M \cdot \frac{1-r}{4 r \sin ^{4} \delta / 2}+M \int_{\delta}^{\pi}\left|\frac{\partial^{2}}{\partial t^{2}}\left(\frac{1-r^{2}}{1+r^{2}-2 r \cos t}\right)\right| d t \leq K(1-r),
$$

where $M=\int_{-x}^{\pi}|f(t)| d t, K$ is a constant not depending on r. Therefore

1) A function $f(t)$ has a Borel derivative $a(\neq \infty)$ at θ_{0} if $\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} \frac{f\left(t+\theta_{0}\right)-f\left(\theta_{0}\right)}{t} d t=a$ and we write it $B^{\prime} f\left(\theta_{0}\right)$. Similarly $f(t)$ has a symmetric Borel derivative $B_{a}^{\prime} f\left(\theta_{0}\right)=\boldsymbol{a}$ at θ_{0} if $\lim _{h \rightarrow 0} \frac{1}{h} \int_{0}^{h} \frac{f\left(\theta_{0}+t\right)-f\left(\theta_{0}-t\right)}{2 t} d t=\alpha$, where the integrals are taken in the sense of $\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{h}$.

$$
\begin{aligned}
\lim _{r \rightarrow 1} I_{3} & =0, \text { similarly } \lim _{r \rightarrow 1} I_{1}=0 . \text { As for } I_{2}, \text { setting } P_{r}(t)=\frac{1-r^{2}}{1+r^{2}-2 r \cos t}, \\
I_{2} & =\int_{0}^{d} \frac{f(t)-f(-t)}{2 t} 2 t \frac{\partial}{\partial t} P_{r}(t) d t \\
& =F(\delta) \frac{4 r\left(1-r^{2}\right) \delta \sin \delta}{\left(1+r^{2}-2 r \cos \delta\right)^{2}}+\int_{0}^{b} F(t) \frac{\partial}{\partial t}\left(2 t \frac{\partial}{\partial t} P_{r}(t)\right) d t \\
& =o(1)^{2)}+\int_{0}^{s} F(0) \frac{\partial}{\partial t}\left(2 t \frac{\partial}{\partial t} P_{r}(t)\right) d t+\int_{0}^{s} t \varepsilon(t) \frac{\partial}{\partial t}\left(2 t \frac{\partial}{\partial t} P_{r}(t)\right) d t .
\end{aligned}
$$

The second term is $o(1)$, and the last term I_{2}^{\prime} is divided into two terms: $\quad I_{2}^{\prime}=\int_{0}^{d} 2 \varepsilon(t) t \frac{\partial}{\partial t} P_{r}(t) d t+\int_{0}^{d} 2 \varepsilon(t) t^{2} \frac{\partial^{2}}{\partial t^{2}} P_{r}(t) d t$.
Since $\int_{0}^{\delta}\left|t \frac{\partial}{\partial t} P_{r}(t)\right| d t, \int_{0}^{\delta}\left|t^{2} \frac{\partial^{2}}{\partial t^{2}} P_{r}(t)\right| d t$ are bounded in r, we can see $\left|I_{2}^{\prime}\right| \leq \varepsilon K_{1}$, where K_{1} is a constant not depending on r. Collecting the results we have $\lim _{r \rightarrow 1} \frac{\partial u(r)}{\partial \theta}=0=B_{s}^{\prime} f(0)$.
Q.E.D.

Instead of the Borel derivative, if we take up the approximate derivative ${ }^{8)}$ this theorem does not hold in general. For example, let $f(t)$ be defined in $[-\pi, \pi]$ as follows:

$$
f(t)= \begin{cases}1 & \text { for } t \in I_{n}=\left[1 / 2^{n}, 1 / 2^{n}+1 / 4^{n}\right], n=1,2, \cdots, \\ 0 & \text { for } t \in[-\pi, \pi]-\bigcup_{=1} I_{n}\end{cases}
$$

$f(t)$ is approximately derivable at $t=0$ and $f_{a p}^{\prime}(0)=0,{ }^{3)}$ but $\varlimsup_{r \rightarrow 1} \frac{\partial u(r)}{\partial \theta}>0$. In fact if we set $r_{n}=1-1 / 2^{n}(n=1,2, \cdots), \frac{\partial u\left(r_{n}\right)}{\partial \theta}$ always exceed $\left(5 \pi^{8}\right)^{-1}$.
3. In the preceding section we have studied that the approximate derivative is too weak to restrict the boundary behaviour of $\frac{\partial u}{\partial \theta}$. Now we are faced with the problem, how can we expect the positive result in this direction? As a trial, we shall define a new derivative which is based on an approximate derivative but has an order.

Let x_{0} be a real number, E be a set of real numbers and $\alpha \geq 1$. Setting $I_{h}=\left[x_{0}, x_{0}+h\right]\left(I_{h}=\left[x_{0}+h, x_{0}\right]\right)$ for $h>0(h<0)$, if we have $\lim _{h \rightarrow 0}$ mes. $\left(E \cdot I_{h}\right) /\left(\text { mes. } I_{h}\right)^{\alpha}=0$ then we shall call x_{0} is a right-hand (lefthand) point of dispersion of order α for a set E. If x_{0} is simultaneously a right-hand and a left-hand point of dispersion of order α for E, it is called merely a point of dispersion of order a for a set E. Given a finite measurable function $f(t)$, for $\varepsilon>0$ and for τ we shall set $E\left(\varepsilon, \tau ; x_{0}\right)=E\left[x ;\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-\tau\right| \geqq \varepsilon\right]$. For every $\varepsilon>0$, if x_{0} is
2) This notation means that this term tends to zero as $r \rightarrow 1$.
3) Cf. S. Saks: Theory of the Integral, pp. 218-220.
a point of dispersion of order α for $E\left(\varepsilon, \tau ; x_{0}\right)$, we shall say τ is the approximate derivative of order α of $f(x)$ at x_{0} and denote it $\tau=f_{a p}^{[\alpha]}\left(x_{0}\right)$.

Obviously if $f(x)$ is derivable in the usual sense at x_{0} then $f^{\prime}\left(x_{0}\right)$ $=f_{a p}^{[\alpha]}\left(x_{0}\right)$ for every $\alpha \geq 1$, and if $f(x)$ has an approximate derivative of order α at x_{0} and $\alpha \geq \alpha^{\prime}$ then $f(x)$ has an approximate derivative of order α^{\prime} at x_{0} and $f_{a p}^{[\alpha]}\left(x_{0}\right)=f_{a p}^{[\alpha]}\left(x_{0}\right)$, and finally the concept of an approximate derivative of order 1 coincides with that of the usual approximate derivative.

As for the relation between the above defined ordered approximate derivative and the Borel derivative we shall show the following example ${ }^{4)}$ which permits us, for every $\alpha \geq 1$, to construct a set of positive measure P and an integrable function $F(x)$ such that there exists an approximate derivative of order α at every point of P but there exists Borel derivative at no point of P.

We can assume that α is a positive integer. For $k=1,2, \cdots$, we shall define the integer n_{k} in the following manner:
" n_{k} is the minimum number n such that

$$
1+1 / 2+1 / 3+\cdots+1 / n>2^{(2 \alpha-1) k+\alpha} " .
$$

Next, we shall make two groups of intervals in [0,1] according to the following steps.
[1] we shall divide the interval [0,1] into $2 n_{1}$ equal segments and denote the points of subdivision from left to right, $c_{1}, c_{2}, \cdots, c_{2 n_{1}-1}$. Denoting δ_{i} the open interval of which center is c_{i} and has length $1 / 8 n_{1}$ and δ_{i}^{\prime} the open interval of the same center as δ_{i} and of length $\left(1 / 8 n_{1}\right)^{\text {a }}$, we shall call the former the intervals of $1^{\text {st }}$ group $1^{\text {st }}$ class and the latter the intervals of $1^{\text {st }}$ group $2^{\text {nd }}$ class.
[2] Removing from [0,1] all intervals of $1^{\text {st }}$ group $1^{\text {st }}$ class we divide each remaining intervals into $2 n_{2}$ equal segments whose terminal points are $c_{2 n_{1}}, c_{2 n_{1}+1}, \cdots$. As in [1] we describe two classes of intervals each of which has c_{i} as a center and is of length respectively $1 / 32 n_{1} n_{2}$ and $\left(1 / 32 n_{1} n_{2}\right)^{\alpha}$, and call them respectively the intervals of $2^{\text {nd }}$ group $1^{\text {st }}$ class and of $2^{\text {nd }}$ group $2^{\text {nd }}$ class.
[3] In general, the intervals of $k^{\text {th }}$ group are defined in the following: removing the all intervals of $1^{\text {st }}$ class up to $(k-1)^{\text {th }}$ group we divide each remaining intervals into $2 n_{k}$ equal segments. The points of this subdivision are the centers of intervals of $1^{\text {st }}$ and of $2^{\text {nd }}$ class, the former have length $1 /\left(2^{2 k+1} n_{1} n_{2} \cdots n_{k}\right)$, the latter $1 /\left(2^{2 k+1} n_{1} n_{2} \cdots n_{k}\right)^{\alpha}$.

Proceeding as is shown in the above steps, we shall obtain the intervals of $k^{\text {th }}$ group $1^{\text {st }}$ class and $2^{\text {nd }}$ class for every k. Removing from $[0,1]$ all the intervals of $1^{\text {st }}$ class of each group, we obtain a perfect

[^0]set P_{1}. The set of all points of density for P_{1} is denoted by P. As is easily seen mes. $P>1 / 2$, and this is the desired set. The desired function is now defined as
\[

F(x)= $$
\begin{cases}\left(n_{1} n_{2} \cdots n_{k}\right)^{\alpha-1} & \text { for } x \text { which belongs to the intervals } \\ \text { of } k^{\text {th }} \text { group } 2^{\text {nd }} \text { class, } k=1,2, \cdots, \\ \text { elsewhere. }\end{cases}
$$
\]

At each point x of P we have $F_{a_{p}}^{[\alpha]}(x)=0$, whereas $F(x)$ has no derivative in the sense of Borel, and finally $F(x)$ is integrable in $[0,1]$.
4. Letting $f(t)$ be a bounded measurable function on $[-\pi, \pi]$ and $\sup _{-\pi \leq t \leq x}|f(t)|=M$, we shall consider the Poisson integral (1) in the first section. Concerning this we can state the following theorem.

Theorem 2. If $f(t)$ has an approximate derivative of order α at θ_{0} for $\alpha>4$, we can obtain $\lim _{r \rightarrow 1} \frac{\partial u\left(r e^{i \theta 0}\right)}{\partial \theta}=f_{a p}^{[\alpha]}\left(\theta_{0}\right)$.

Proof. As in Theorem 1, we may assume $\theta_{0}=0, f_{a p}^{[\alpha]}\left(\theta_{0}\right)=0$ and the integral (2) which expresses $\frac{\partial u(r)}{\partial \theta}$ is divided into three parts, however in this case δ is not a constant but depends on r, that is, we choose δ such that $\delta=\delta(r)=(1-r)^{2 / \alpha}$.

Since $I_{8}=\int_{\partial}^{\pi} f(t) \frac{\partial}{\partial t} P_{r}(t) d t$ and $\frac{\partial}{\partial t} P_{r}(t) \leq 0$ in $t \in[0, \pi]$, we have $\left|I_{3}\right| \leq M\left[P_{r}(\delta)-P_{r}(\pi)\right] \leq 4 M r(1-r) /\left(1+r^{2}-2 r \cos \delta\right) \leq M(1-r) /\left(r \sin ^{2} \delta / 2\right)$ $\leq M(1-r) /\left[r(\delta / \pi)^{2}\right]=\pi^{2} M(1-r) / r \delta^{2}=\pi^{2} M(1-r) / r(1-r)^{4 / \alpha}=\pi^{2} M r^{-1}$ $\times(1-r)^{1-4 / \alpha} \rightarrow 0(r \rightarrow 1)$, similarly $\lim _{r \rightarrow 1} I_{1}=0$. In the evaluation of I_{2} we shall set for every $\varepsilon>0, A(\varepsilon)=E[t:|f(t)|<\varepsilon|t|],{ }^{5)} B(\varepsilon)=E[t:|f(t)|$ $\geq \varepsilon|t|], p_{\varepsilon}(\delta)=\operatorname{mes} .([0, \delta] \cdot B(\varepsilon)) / \delta^{\alpha}$ and $I_{2}=\int_{-\delta}^{\delta} f(t) \frac{\partial}{\partial t} P_{r}(t) d t=\int_{[-\delta, \delta] \cdot A(\varepsilon)}$ $+\int_{[-\delta, \delta] \cdot B(\varepsilon)}=I_{2,1}+I_{2,2} . \quad$ First, as $I_{2,1}=\int_{[-\delta, \delta] \cdot A(\varepsilon)} \frac{f(t)}{t} t \frac{\partial}{\partial t} P_{r}(t) d t$ we have $\left|I_{2,1}\right| \leq \varepsilon \int_{-\pi}^{\pi}\left|t \frac{\partial}{\partial t} P_{r}(t)\right| d t=\varepsilon K$, where K is a constant not depending on r. Secondly, setting $I_{2,2}=\int_{[0, d] \cdot B(2)}+\int_{[-\delta, 0] \cdot B(\varepsilon)}=I_{2,2}^{(1)}+I_{2,2}^{(2)}$, we have $\left|I_{2,2}^{(1)}\right|$ $\leq M \int_{[0, \delta] \cdot B(\varepsilon)}\left|\frac{\partial}{\partial t} P_{r}(t)\right| d t \leq M \int_{[0, \delta] \cdot B(\varepsilon)} K^{\prime} /(1-r)^{2} d t=M K^{\prime}$ mes. $([0, \delta] \cdot B(\varepsilon))$ $(1-r)^{-2}=M K^{\prime}$ mes. $([0, \delta] \cdot B(\varepsilon)) / \delta^{\alpha}=M K^{\prime} p_{\mathrm{e}}(\delta)$, where K^{\prime} is an absolute constant. The hypothesis that $f_{a p}^{[\alpha]}(0)=0$ implies $\lim _{r \rightarrow 1} p_{\varepsilon}(\delta)=0$. Therefore we have $\lim _{r \rightarrow 1} I_{2,2}^{(1)}=0$, in the same way, $\lim _{r \rightarrow 1} I_{2,2}^{(2)}=0$ and this completes the proof.
5) The notation being that $E[t:$ () $]$ is the set of all t such that ().

[^0]: 4) This is based on the example of Khintchine: A. Khintchine: Recherches sur la structure de fonctions mesurables, Fund. Math., 9, 233 (1927).
