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University of Osaka Prefecture
(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1961)

1. Let f(t) be an integrable function on the interval [—=, x],
then we can consider the Poisson integral

(1) wren=_1 f ) 1—7? dt (0<r<1, 0<0<2q).
2z J 14-7*—2r cos (t—6) o

The following theorem concerning the Poisson integral is well known: 4f
i8¢
f(@t) has a derivative at t=@0,, then we have limiu(—é’:;) =f'(0,). The
r>1

purpose of this paper is to investigate whether this theorem holds for
other derivatives. As

au('re) —1 1—72
(2) f‘f() (1+'r2 27 cos (t— 0))

we shall cons1der the mtegrals of this type.
2. We shall begin with the positive result.
THEOREM 1. If f(t) has a symmetric Borel derivative® at 6,,

then we have hm u(re“") B; £(8,).
Proof. Wlthout loss of generality, we can assume that 4,=0 and
Blf(6)=0. If we set F(t)= f ’&)“Eft_’(:ﬁdt, F(h)=F(0)+he(h), it

]
follows from the hypothesis that for every >0 there exists d such
that 0<h<é implies |e(h)|<e. Fixing 6 we divide the integral (2)
into three parts:

S e

Integration by parts leads to the evaluation of I,
1—7r *| 9% ( 1—72 )l
LisM """ M| |2 dt<K(1—r),
|L| 4'rsin‘5/2+ «[ (1=m)

ot* \14+7r*—2rcost
where M= f . | f®)|dt, K is a constant not depending on ». Therefore

1) A function f(¢) has a Borel derivative a( o) at 6, if 1»"‘6 -il"— f h&ﬂ’z;wdt=a
>

]
and we write it B'f(6,). Similarly f(t) has a symmetric Borel derivative B,f(8))=ea at

h () - —_
6, if lhm(x’%- j L(—"—t—t—)—é#“——t)—dt:a, where the integrals are taken in the sense of
: 0
lim
>0
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1—7?
1+4+7r2—2rcost’

lim I,=0, similarly lim I,=0. As for I,, setting P, ()=

_ 4'r(1 r%)6 sin § a d
- F(&) (14 7r2—2r cos d)* + f F(t)_(Zt ot P'(t))dt

—o(1)?+ f F(O)—(zt P (t))dt n f te(t)—(2t ,(t))dt

The second term is o(1), and the last term I} is divided into two
terms: Ii= f "26(t) t_"”_ P,(t)dt+ f "2¢(t) t”izz—P,(t)dt.
L)

t*%P (t)ldt are bounded in 7, we can see

|I}|<eK,, where K, is a constant not depending on 7. Collecting
the results we have lim%ai’i)=0=35f(0). Q.E.D.
r>l

"
Since 't——P,(t)|dt,
of a

Instead of the Borel derivative, if we take up the approximate
derivative® this theorem does not hold in general. For example, let
J(t) be defined in [—=, =] as follows:

1 for tel,=[1/2" 1/2"+1/4"], n=1,2,---,
ro-[:

for te[ —n, n]— U I,

f(t) is approximately derivable at ¢=0 and f%,(0)=0,” but 11m a’;gr)

In fact if we set r,=1—1/2" (n=1,2,---), au( oulry) always exceed (5x*).
3. In the preceding section we have studled that the approximate

derivative is too weak to restrict the boundary behaviour of % Now

we are faced with the problem, how can we expect the positive result
in this direction? As a trial, we shall define a new derivative which
is based on an approximate derivative but has an order.

Let z, be a real number, £ be a set of real numbers and a>1.
Setting I,=[=,, x,+h] (J,=[2y+h,z,]) for h>0 (h<0), if we have
1:13 mes. (E-1,)/(mes. I,)*=0 then we shall call z, is a right-hand (left-

hand) point of dispersion of order a for a set E. If z, is simulta-
neously a right-hand and a left-hand point of dispersion of order a for
E, it is called merely a point of dispersion of order a for a set E.
Given a finite measurable function f(t), for ¢>0 and for r we shall

set E(e, 73 %)= E[ J@—flw)

x—12,

gs]. For every >0, if =z, is

2) This notation means that this term tends to zero as r—1.
8) Cf. S. Saks: Theory of the Integral, pp. 218-220,
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a point of dispersion of order a for E(g, 7;x,), we shall say r is the
approximate derivative of order a of f(x) at x, and denote it == fLel(z,).

Obviously if f(z) is derivable in the usual sense at z, then f’(x,)
= fLl)(x,) for every a>1, and if f(x) has an approximate derivative
of order a at z, and a>a’ then f(x) has an approximate derivative
of order o' at x, and fLgi(x,)=f%5)(x,), and finally the concept of an
approximate derivative of order 1 coincides with that of the usual
approximate derivative.

As for the relation between the above defined ordered approximate
derivative and the Borel derivative we shall show the following ex-
ample® which permits us, for every a>1, to construct a set of positive
measure P and an integrable function F'(z) such that there exists an
approximate derivative of order a at every point of P but there exists
Borel derivative at mo point of P.

We can assume that a is a positive integer. For k=1,2,---, we
shall define the integer 7, in the following manner:

“mn, is the minimum number » such that
1+1/241/8+ - - - +1/n > 2@ Dr+a»
Next, we shall make two groups of intervals in [0, 1] according to
the following steps.

[1] we shall divide the interval [0, 1] into 2n, equal segments
and denote the points of subdivision from left to right, ¢, ¢;,- -+, € 1.
Denoting J, the open interval of which center is ¢; and has length
1/8n, and &) the open interval of the same center as 4, and of length
(1/8n,)", we shall call the former the intervals of 1°** group 1°* class
and the latter the intervals of 1%* group 2" class.

[2] Removing from [0, 1] all intervals of 1°* group 1°* class we
divide each remaining intervals into 27, equal segments whose terminal
points are Cm,, €41, *+ . As in [1] we describe two classes of inter-
vals each of which has ¢; as a center and is of length respectively
1/32n,m, and (1/32n,n,)%, and call them respectively the intervals of 2°¢
group 1% class and of 2" group 2™ class.

[8] In general, the intervals of k'™ group are defined in the
following: removing the all intervals of 1** class up to (k—1)" group
we divide each remaining intervals into 2n, equal segments. The
points of this subdivision are the centers of intervals of 1°* and of
2°? class, the former have length 1/(2%**n,n,---n,), the latter
1/(2%+1n,my- - - )%

Proceeding as is shown in the above steps, we shall obtain the in-
tervals of k*® group 1°* class and 2™ class for every k. Removing from
[0, 1] all the intervals of 1°* class of each group, we obtain a perfect

4) This is based on the example of Khintchine: A. Khintchine: Recherches sur
la structure de fonctions mesurables, Fund. Math., 9, 233 (1927).
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set P,. The set of all points of density for P, is denoted by P. Asis
easily seen mes. P>1/2, and this is the desired set. The desired func-
tion is now defined as
F(x)=((nns---m,)*'  for x which belongs to the intervals
of k™ group 2™ class, k=1,2,---,
0 elsewhere.
At each point 2 of P we have FL[:(x)=0, whereas F'(x) has no deriva-
tive in the sense of Borel, and finally F'(x) is integrable in [0, 1].
4. Letting f(t) be a bounded measurable function on [ —x, ] and
j‘;};,'f (t)|=M, we shall consider the Poisson integral (1) in the first

section. Concerning this we can state the following theorem.
THEOREM 2. If f(t) has an approximate derivative of order a
at 6, for a>4, we can obtain lriglﬂ(;;i‘l=f£;](00).
Proof. As in Theorem 1, we may assume 6,=0, fL=(6,)=0 and
the integral (2) which expresses _3_1;594) is divided into three parts,

however in this case ¢ is not a constant but depends on r, that is,
we choose § such that 6=d(r)=(1—r)*".

Since I,= f *f(t)—gt—P,(t)dt and %P,(t)so in te[0, 7], we have

|| < M[P,(9) —-aP,(n)] <4Mr(1—r)/(1+r*—2r cos 8) < M (1 —7)/(r sin® 5/2)
<M@A—7)/[13/n)*] = * M1 —7) /78 = 2* M(L—7) | r(1— )= = z2 Mr-!
X(1—r)}**>0 (r—>1), similarly limI,=0. In the evaluation of I,
r>1
we shall set for every >0, A(e)=E[t:|f(t)|<e|t]|],” Be)=E[t:|f(¢)]
3
2¢|t]], P&)=mes.([0,8]- Be)o* and L= [ £(®)-2P,@dt= [
-3 [—3,8]-ACe)
+ f =I; +1,;. First, as I,;= f Mti-P,(t)dt we have
at
{-2,8-B(®) {-2,81-4®

| Ie,1| <€ f *|t-éat—P,(t) dt=eK, where K is a constant not depending on
r. Secondly, setting I,.= f + f =I®+I®, we have |I®
{0,518  [-3,00-B()
<M f —a—P,(t)ldtSM f K'|(1—7) dt = MK’ mes. ([0, 3]- B(s))
[0,3]-B(e) at [0,8]-B(e)
(1—7)":=MK’ mes. ([0, 5]- B(¢e))/6“= MK 'p.(5), where K’ is an absolute
constant. The hypothesis that fiZ(0)=0 implies lim p,(6)=0. There-
ro>l
fore we have lim I{?=0, in the same way, linll I$2=0 and this com-

rol

pletes the proof.

5) The notation being that E[¢: ( )] is the set of all ¢ such that ( ).



