4. On Poisson Integrals

By Teruo IKEGAMI University of Osaka Prefecture (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1961)

1. Let f(t) be an integrable function on the interval $[-\pi, \pi]$, then we can consider the Poisson integral

(1)
$$u(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \frac{1-r^2}{1+r^2-2r\cos(t-\theta)} dt \quad (0 \le r < 1, \ 0 \le \theta < 2\pi).$$

The following theorem concerning the Poisson integral is well known: if f(t) has a derivative at $t=\theta_0$, then we have $\lim_{r\to 1} \frac{\partial u(re^{t\theta_0})}{\partial \theta} = f'(\theta_0)$. The purpose of this paper is to investigate whether this theorem holds for other derivatives. As

(2)
$$\frac{\partial u(re^{i\theta})}{\partial \theta} = \frac{-1}{2\pi} \int_{-\pi}^{\pi} f(t) \frac{\partial}{\partial t} \left(\frac{1-r^2}{1+r^2-2r\cos(t-\theta)} \right) dt,$$

we shall consider the integrals of this type.

2. We shall begin with the positive result.

THEOREM 1. If f(t) has a symmetric Borel derivative¹⁾ at θ_0 , then we have $\lim_{r \to 1} \frac{\partial}{\partial \theta} u(re^{i\theta_0}) = B'_{\theta} f(\theta_0)$.

Proof. Without loss of generality, we can assume that $\theta_0 = 0$ and $B'_{\bullet}f(\theta_0) = 0$. If we set $F(t) = \int_{t}^{x} \frac{f(t) - f(-t)}{2t} dt$, $F(h) = F(0) + h\epsilon(h)$, it follows from the hypothesis that for every $\epsilon > 0$ there exists δ such that $0 \le h < \delta$ implies $|\epsilon(h)| < \epsilon$. Fixing δ we divide the integral (2) into three parts:

$$\frac{-1}{2\pi}\left[\int_{-\pi}^{-\delta}+\int_{-\delta}^{\delta}+\int_{\delta}^{\pi}\right]=\frac{-1}{2\pi}(I_1+I_2+I_3).$$

Integration by parts leads to the evaluation of I_3 ,

$$|I_{s}| \leq M \cdot \frac{1-r}{4r \sin^{4} \delta/2} + M \int_{\delta}^{\pi} \left| \frac{\partial^{2}}{\partial t^{2}} \left(\frac{1-r^{2}}{1+r^{2}-2r \cos t} \right) \right| dt \leq K(1-r),$$

where $M = \int_{-\pi}^{\pi} |f(t)| dt$, K is a constant not depending on r. Therefore

1) A function f(t) has a Borel derivative $\alpha(\neq \infty)$ at θ_0 if $\lim_{h \to 0} \frac{1}{h} \int_0^h \frac{f(t+\theta_0) - f(\theta_0)}{t} dt = \alpha$ and we write it $B'f(\theta_0)$. Similarly f(t) has a symmetric Borel derivative $B'_{\theta}f(\theta_0) = \alpha$ at θ_0 if $\lim_{h \to 0} \frac{1}{h} \int_0^h \frac{f(\theta_0+t) - f(\theta_0-t)}{2t} dt = \alpha$, where the integrals are taken in the sense of $\lim_{t \to 0} \int_p^h$.
$$\begin{split} \lim_{r \to 1} I_{3} &= 0, \text{ similarly } \lim_{r \to 1} I_{1} = 0. \text{ As for } I_{2}, \text{ setting } P_{r}(t) = \frac{1 - r^{2}}{1 + r^{2} - 2r \cos t}, \\ I_{2} &= \int_{0}^{\delta} \frac{f(t) - f(-t)}{2t} 2t \frac{\partial}{\partial t} P_{r}(t) dt \\ &= F(\delta) \frac{4r(1 - r^{2})\delta \sin \delta}{(1 + r^{2} - 2r \cos \delta)^{2}} + \int_{0}^{\delta} F(t) \frac{\partial}{\partial t} \left(2t \frac{\partial}{\partial t} P_{r}(t)\right) dt \\ &= o(1)^{2i} + \int_{0}^{\delta} F(0) \frac{\partial}{\partial t} \left(2t \frac{\partial}{\partial t} P_{r}(t)\right) dt + \int_{0}^{\delta} t \varepsilon(t) \frac{\partial}{\partial t} \left(2t \frac{\partial}{\partial t} P_{r}(t)\right) dt. \end{split}$$

The second term is o(1), and the last term I'_2 is divided into two terms: $I'_2 = \int_0^s 2\varepsilon(t) t \frac{\partial}{\partial t} P_r(t) dt + \int_0^s 2\varepsilon(t) t^2 \frac{\partial^2}{\partial t^2} P_r(t) dt$. Since $\int_0^s \left| t \frac{\partial}{\partial t} P_r(t) \right| dt$, $\int_0^s \left| t^2 \frac{\partial^2}{\partial t^2} P_r(t) \right| dt$ are bounded in r, we can see

 $|I'_2| \le \epsilon K_1$, where K_1 is a constant not depending on r. Collecting the results we have $\lim_{r \to 1} \frac{\partial u(r)}{\partial \theta} = 0 = B'_s f(0)$. Q.E.D.

Instead of the Borel derivative, if we take up the approximate derivative³⁾ this theorem does not hold in general. For example, let f(t) be defined in $[-\pi, \pi]$ as follows:

$$f(t) = \begin{cases} 1 & \text{for } t \in I_n = [1/2^n, \ 1/2^n + 1/4^n], \ n = 1, 2, \cdots, \\ 0 & \text{for } t \in [-\pi, \pi] - \bigcup_{i=1}^{n} I_i, \end{cases}$$

f(t) is approximately derivable at t=0 and $f'_{ap}(0)=0$,³⁾ but $\overline{\lim_{r \to 1} \frac{\partial u(r)}{\partial \theta}} > 0$. In fact if we set $r_n=1-1/2^n$ $(n=1,2,\cdots)$, $\frac{\partial u(r_n)}{\partial \theta}$ always exceed $(5\pi^3)^{-1}$.

3. In the preceding section we have studied that the approximate derivative is too weak to restrict the boundary behaviour of $\frac{\partial u}{\partial \theta}$. Now we are faced with the problem, how can we expect the positive result in this direction? As a trial, we shall define a new derivative which is based on an approximate derivative but has an order.

Let x_0 be a real number, E be a set of real numbers and $\alpha \ge 1$. Setting $I_h = [x_0, x_0 + h]$ $(I_h = [x_0 + h, x_0])$ for h > 0 (h < 0), if we have lim mes. $(E \cdot I_h)/(\text{mes. } I_h)^{\alpha} = 0$ then we shall call x_0 is a right-hand (lefthand) point of dispersion of order α for a set E. If x_0 is simultaneously a right-hand and a left-hand point of dispersion of order α for E, it is called merely a point of dispersion of order α for a set E. Given a finite measurable function f(t), for $\varepsilon > 0$ and for τ we shall set $E(\varepsilon, \tau; x_0) = E\left[x; \left|\frac{f(x) - f(x_0)}{x - x_0} - \tau\right| \ge \varepsilon\right]$. For every $\varepsilon > 0$, if x_0 is

²⁾ This notation means that this term tends to zero as $r \rightarrow 1$.

³⁾ Cf. S. Saks: Theory of the Integral, pp. 218-220.

T. IKEGAMI

a point of dispersion of order α for $E(\varepsilon, \tau; x_0)$, we shall say τ is the approximate derivative of order α of f(x) at x_0 and denote it $\tau = f_{ap}^{[\alpha]}(x_0)$.

Obviously if f(x) is derivable in the usual sense at x_0 then $f'(x_0) = f_{\alpha p}^{[\alpha]}(x_0)$ for every $\alpha \ge 1$, and if f(x) has an approximate derivative of order α at x_0 and $\alpha \ge \alpha'$ then f(x) has an approximate derivative of order α' at x_0 and $f_{\alpha p}^{[\alpha]}(x_0) = f_{\alpha p}^{[\alpha']}(x_0)$, and finally the concept of an approximate derivative of order 1 coincides with that of the usual approximate derivative.

As for the relation between the above defined ordered approximate derivative and the Borel derivative we shall show the following example⁴ which permits us, for every $\alpha \ge 1$, to construct a set of positive measure P and an integrable function F(x) such that there exists an approximate derivative of order α at every point of P but there exists Borel derivative at no point of P.

We can assume that α is a positive integer. For $k=1, 2, \cdots$, we shall define the integer n_k in the following manner:

" n_k is the minimum number n such that

 $1+1/2+1/3+\cdots+1/n>2^{(2\alpha-1)k+\alpha}$ ".

Next, we shall make two groups of intervals in [0, 1] according to the following steps.

[1] we shall divide the interval [0, 1] into $2n_1$ equal segments and denote the points of subdivision from left to right, $c_1, c_2, \dots, c_{2n_1-1}$. Denoting δ_i the open interval of which center is c_i and has length $1/8n_1$ and δ'_i the open interval of the same center as δ_i and of length $(1/8n_1)^{\alpha}$, we shall call the former the intervals of 1^{st} group 1^{st} class and the latter the intervals of 1^{st} group 2^{nd} class.

[2] Removing from [0, 1] all intervals of 1^{st} group 1^{st} class we divide each remaining intervals into $2n_2$ equal segments whose terminal points are $c_{2n_1}, c_{2n_1+1}, \cdots$. As in [1] we describe two classes of intervals each of which has c_i as a center and is of length respectively $1/32n_1n_2$ and $(1/32n_1n_2)^{a}$, and call them respectively the intervals of 2^{nd} group 1^{st} class and of 2^{nd} group 2^{nd} class.

[3] In general, the intervals of k^{th} group are defined in the following: removing the all intervals of 1^{st} class up to $(k-1)^{\text{th}}$ group we divide each remaining intervals into $2n_k$ equal segments. The points of this subdivision are the centers of intervals of 1^{st} and of 2^{nd} class, the former have length $1/(2^{2k+1}n_1n_2\cdots n_k)$, the latter $1/(2^{2k+1}n_1n_2\cdots n_k)^{\alpha}$.

Proceeding as is shown in the above steps, we shall obtain the intervals of k^{th} group 1^{st} class and 2^{nd} class for every k. Removing from [0, 1] all the intervals of 1^{st} class of each group, we obtain a perfect

⁴⁾ This is based on the example of Khintchine: A. Khintchine: Recherches sur la structure de fonctions mesurables, Fund. Math., 9, 233 (1927).

set P_1 . The set of all points of density for P_1 is denoted by P. As is easily seen mes. P > 1/2, and this is the desired set. The desired function is now defined as

$$F(x) = \begin{cases} (n_1 n_2 \cdots n_k)^{\alpha-1} & \text{for } x \text{ which belongs to the intervals} \\ 0 & \text{of } k^{\text{th}} \text{ group } 2^{\text{nd}} \text{ class, } k = 1, 2, \cdots, \\ 0 & \text{elsewhere.} \end{cases}$$

At each point x of P we have $F_{ap}^{[\alpha]}(x)=0$, whereas F(x) has no derivative in the sense of Borel, and finally F(x) is integrable in [0, 1].

4. Letting f(t) be a bounded measurable function on $[-\pi, \pi]$ and $\sup_{-\pi \le t \le \pi} |f(t)| = M$, we shall consider the Poisson integral (1) in the first section. Concerning this we can state the following theorem.

THEOREM 2. If f(t) has an approximate derivative of order α at θ_0 for $\alpha > 4$, we can obtain $\lim_{r \to 1} \frac{\partial u(re^{i\theta \circ})}{\partial \theta} = f_{\alpha p}^{[\alpha]}(\theta_0)$.

Proof. As in Theorem 1, we may assume $\theta_0 = 0$, $f_{ap}^{[a]}(\theta_0) = 0$ and the integral (2) which expresses $\frac{\partial u(r)}{\partial \theta}$ is divided into three parts, however in this case δ is not a constant but depends on r, that is, we choose δ such that $\delta = \delta(r) = (1-r)^{2/\alpha}$.

Since $I_{\mathfrak{s}} = \int_{\mathfrak{s}}^{\mathfrak{s}} f(t) \frac{\partial}{\partial t} P_{r}(t) dt$ and $\frac{\partial}{\partial t} P_{r}(t) \leq 0$ in $t \in [0, \pi]$, we have $|I_{\mathfrak{s}}| \leq M[P_{r}(\delta) - P_{r}(\pi)] \leq 4Mr(1-r)/(1+r^{2}-2r\cos\delta) \leq M(1-r)/(r\sin^{2}\delta/2)$ $\leq M(1-r)/[r(\delta/\pi)^{2}] = \pi^{2}M(1-r)/r\delta^{2} = \pi^{2}M(1-r)/r(1-r)^{4/\alpha} = \pi^{2}Mr^{-1}$ $\times (1-r)^{1-4/\alpha} \to 0 \quad (r \to 1)$, similarly $\lim_{r \to 1} I_{\mathfrak{1}} = 0$. In the evaluation of $I_{\mathfrak{s}}$ we shall set for every $\mathfrak{s} > 0$, $A(\mathfrak{s}) = E[t: |f(t)| < \mathfrak{s}|t|]$,⁵⁾ $B(\mathfrak{s}) = E[t: |f(t)|$ $\geq \mathfrak{s}|t|]$, $p_{\mathfrak{e}}(\delta) = \operatorname{mes.}([0, \delta] \cdot B(\mathfrak{s}))/\delta^{\alpha}$ and $I_{\mathfrak{s}} = \int_{-\mathfrak{s}}^{\mathfrak{s}} f(t) \frac{\partial}{\partial t} P_{r}(t) dt = \int_{[-\mathfrak{s},\mathfrak{s}] \cdot A(\mathfrak{s})}^{\mathfrak{s}} I(t) dt = \int_{-\mathfrak{s}}^{\mathfrak{s}} I(t) dt = I(t) dt$

5) The notation being that E[t: ()] is the set of all t such that ().