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(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1961)

1. Let f(t) be an integrable function on the interval [--, ,
then we can consider the Poisson integral

1--r dt (0gr<l, 0<0<2).( 1 ) u(re*): (t)
1+r2-2r cos (t t)

The following theorem concerning the Poisson integral is well known: if
f(t) has a derivative at t-8o, then we have lira Ou(re*)--f’(ao). The

purpose of this paper is to investigate whether this theorem holds for
other derivatives. As

(2) Ou(re’)_ -1 f’f(t) O ( 1--r )30 2 - l-t-r--2r cos (t--) dt,

we shall consider the integrals of this type.
2. We shall begin with the positive result.
THEOREM 1. If f(t) has a symmetric Bord derivative ’ at ,

then we have lira u(re)=Bf().
Proof. Without loss of generality, we can assume that 0=0 and

Bff(Oo -O.

follows from the hypothesis that for every >0 there exists such
ha 0_ imp]ies I(h) - Fixing we divide the integral {2)
into three parts:

Integration by parts lead t the evkmin of I,

4r sin ].
+M gt_<K(1-- r),i- l+r--2rcost

f"where M= [f(t) ldt, K is a constant not depending on r. Therefore

1"
1 fsf(tTOo)--f(oo)dt1) A function f(t) has a Borel derivative #oo) at Oo if

.o h J t

and we write it B’f(oo). Similarly f(t) has a symmetric Borel derivative B’.f(Oo)=O at
f(Oo+t)--f(Oo--t) dt=, where the intels are ten tn the n ofoo if lim

.o 2t

0
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lira/a--0, similarly lim I=0. As for I2, setting P(t)-- l--r2
-* * 1 --,2_.2r cos t

I,.=/’ f(t)--f(-- t) 2t P(t)dt
2t

=F(, 4r(1--r’sina )(1+r--2rcos)
O O P,(t)dt

=o(1) +f’F(O)(2t
The seeond term is o(1), and the last term Ii is divided into two

terms:

f’]Pr(t) dr, ’f’ z2 dt are unded in r, we can seeSince

IINsK, where K is a constant not depending on r. Collecting

the results we have lira Ou(r=O--Bf(O). Q.E.D.

Instead of the Borel derivative, if we take up the approximate
derivative*’ this theorem does not hold in goneral. For example, let
f(t) M defined in [--, J as follows:

1 for tL=E1/2", 1/2"+1/4"J, n=l, 2,..-,
f(0--

0 for

f(t) is approximately derivable at t--0 and f(0)=0,*’ but Ou(r) >O.

In fact. In the preceding section we have studied that the approximate

derivative is oo weak to restrict he unda haviour of . How

we are faced with the problem, how can we exact the sitive result
in this direction ? As a ria], we shah define a new derivative which
is d on an approximate derivative but has an order.

Let z a real numr, E a set of real numrs and 1.
tting :z,zo+] (:z+,z] for h>O (0), if we have
lira mes. (.Z/(mes. Z)’:O hen we shall ll z is ght-hd (efl-

neous]y a right-hand and a left-hand poin of disrsion of order for

Given a finite measurable function f(O, for >0 and for we shah

0

2) This notation means that this term tends to zero as r--, 1.
3) Cf. S. Saks" Theory of the Integral, pp. 218-220.
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a point of dispersion of order a for E(, r; z0), we shall say r is the
approximate derivative of order a off(z) at Xo and denote it r--f;(z0).

Obviously if f(z) is derivable in the usual sense at o then f’(z0)
--f(z0) for every a_> 1, and if f(z) has an approximate derivative
of order a at zo and aa’ then f(z) has an approximate derivative
of order a’ at z and f(Zo)-rfz and finally the concept of anJa k 0,1

approximate derivative of order 1 coincides with that of the usual
approximate derivative.

As for the relation between the above defined ordered approximate
derivative and the Borel derivative we shall show the following ex-
ample* which permits us, for every ,_> 1, to construct a set of positive
measure P and an integrable function F() such that there exists an
approximate derivative of order at ever?/point of P but there exists
Borel derivative at no point of P.

We can assume that is a positive integer. For k--l, 2,.--, we
shall define the integer n, in the following manner:

"n, is the minimum number n such that
1+1/2-}- 1/3-t- +1/n :>2-+".

Next, we shall make two groups of intervals in [0, 1] according to
the following steps.

[1] we shall divide the interval [0, 1 into 2n equal segments
and denote the points of subdivision from left to right, c, c.,-.-, c,_.
Denoting 5 the open interval of which center is c and has length
1/8n and 5, the open interval of the same center as 5 and of length
(1/8n)", we shall call the former the intervals of 1 group 1 class
and the latter the intervals of 1’’ group 2n class.

[2] Removing from [0, 1] all intervals of 1 group 1 class we
divide each remaining intervals into 2n. equal segments whose terminal
points are c,, c,+,.... As in [1] we describe two classes of inter-
vals each of which has c as a center and is of length respectively
1/32nn. and (1/32nn), and call them respectively the intervals of 2
group 1 class and of 2n group 2ad class.

[3] In general, the intervals of k group are defined in the
following: removing the all intervals of 1 class up to (k--l) group
we divide each remaining intervals into 2n equal segments. The
points of this subdivision are the centers of intervals of 1 and of
2 class, the former have length 1](2/nn....n), the latter

Proceeding as is shown in the above steps, we shall obtain the in-
tervals of k group 1 class and 2 class for every k. Removing from
[0, 1] all the intervals of 1 class of each group, we obtain a perfect

4) This is based on the example of Khintchine- A. Khintchine: Recherches sur
la structure de fonctions mesurables, Fund. Math, 9, 233 (1927).
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set P. The set of all points of density for P is denoted by P. As is
easily seen rues. P;>l/2, and this is the desired set. The desired func-
tion is now defined as

F(z)-- (nn.. n)- for which belongs to the intervals
of kth group 2nd class, k=l, 2,-.-,

0 elsewhere.
At each point x of P we have F(x)--0, whereas F(x) has no deriva-
tive in the sense of Borel, and finally F(x) is integrable in 0, 1].

4. Letting f(t) a bounded measurable function on I--r, ] and
sup ]f(t)]=M, we shall consider the Poisson integral (1) in the first

section. Concerning this we can state the following theorem.
THEOREM 2. If f(t) has an approximate derivative of order

at o for a>4, we can obtain lim u(re*’)=f(o).
Proof. As in Theorem 1, we may assume 0--0, f(O0)--O and

the integral () which expresses () is divided into hre pars,
however in hi ca is no s conssn bu depends on , ha is,
we choo such ths ()--(1--).
Is] MP()--P() 4M(1--)/(1-- cos #) M(1 )/( sin
(1-v) / v(/) (1-v) /v (-v) /v(1- v)" v-
(1--)- 0 ( 1), similarly lira X--O. In he evaluation

we shall set for every >0, A()=E[t: If(t)<]tl],) B()=E[t: If(t)]

sll, ,()-mes.([O,].B(s))/" aria I,= f(t)P(t)dt-

t at

f’ P,(t)dt=eK, where K is a constant not depending on

--,,,.,,,, we have rC’i

(1--r)-:MK rues. ([0, a]. B(e))Ia:MK’(), where K’ is an absolute
constant. The hypothesis that f;](O):O implies Jim p(a)--O. There-

rl

T()__O and this com-Pote we have Jim .,T):O, in the me way, ]im,--
rl rl

pierce the prooL

5) The notation being that E[t" )J is the set of all such that ().


