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(Comm. by K. KuNuc, M.J.A., March 13, 1961)

All the notations of the previous paper 2 are included in the
present paper.

I. Let C be a circle and let be a symmetry, i.e. an idempotent
isometry ( the identity) leaving OC fixed. Now consider an im-
bedding I of C into a 2-dimensional Euclid subspace E of an n-dimen-
sional Euclid space E. If 0’ is the other fixed point of , denote by G
the totality of Euclid motions g of E leaving both of I(O)and I(0’)
fixed. Then the orbit S by G of I(C) is referred to as a compact
space of ottion, if keeps the curvature of the curve I(C) invariant.
Given a function f(s)on C with f o(s)--f(s), we can extend it to
one defined on the whole S in this way: Let zS and zg(Y(s)) for
gG and sC. Then we set f(s)--f(z). It is easy to see that f(z)
is well-defined.

Let f(s) be such a function that df:O except at 0 and O and
the above condition f o---f hold. Then as is easily seen, the dual
vector V of Gad [f(z)] satisfies 2) and 3)of Theorem A. Further-
more for s such that V(I(s))is not proportional to V(Io(s)), the
vector field V satisfies 1) also at z=g(I(s)) for every g G. In fact
there is a function f2, in the neighborhood of such s, of the nature
that the end point of the vector V) dual to Grad [f(z)] remains
fixed for the movement of zS stated in the theorem. In addition,
we can suppose that f2(s) has been chosen in such a fashion that
leaves fi(s) invariant and the domain of f(s) is the set of all the s of
the above-prescribed nature. For simplicity let us assume that the
exceptional s are nowhere dense. Then Vx and V have the following
properties respectively (we see these from Theorem A).

(1) V is a differentiable vector field defined on the whole S.
(2) The dual 1-form to V is closed.
(3) Ar,3-(*)2’ except at I(0) and I(O’).
(1") V2 s a differeniable vector field defined on a dense open

1) Take a straight-line passing through I(O) to the direction of I(0")for the
a-axis and introduce an orthogonal coordinate system in Es. Then we have

II V(I(s)),l=/l+(d-) b

where a and b are the coordinates of I(s).
2) For an exceptional s, we have $(Avl)--O at z---goI(s) (geG).
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subset K of S.
(2*) The dual 1-form to V. is closed on K.3’

(3") A,e3-(*) at xK except at I(0) and I(0’).
(4*) For every xeK there is a function F defined in U(x)K

and a gradient Vs defined in U(x) with Ar,e-(*) such that FV2= V3
in U(x)K, where U(x) means a neighborhood of .

If condition (3*) is replaced by the following (3"*), we have the
definition of the terse-forming vector field in the large.

(3**) A,e[P,] at K ecept at the O-points of V that are
assumed to form a nowhere dense subset of K.

Conversely, if a Riemann or Finsler space admits a vector field
satisfying (1"), (2"), (3"), (4"), and (iv’) and having a 0-point, then
the space becomes a space of rotation, as has been shown implicitly
in [1].

Although the singularity which V2 possesses along K looks un-
essential for our theory, it is convenient to take such a singularity
into consideration for the reason of its geometric meaning, an example
of which is given by vector field (0.5) in the end of the introduction
of Eli."

IIo In the rest of the present paper we shall prove the theorems
announced in [2] by the use of Ricci calculus while developing a theory
of pseudo-concurrent vector fields. The whole argument is only con-
cerned with the local nature and all the vectors that appear below
are assumed not to vanish. Taking a coordinate system, we write
Ir*=/2X for a geometric object D. For details see the Cartan’s
textbook.

In the usual tensor notation the condition Ae3-(*) turns out
to be

VI=A(x)g+B(x)VV, and P)o Grad [A(x)] =Grad [A(x)],
where A(x) is the function defined in VI of [2] (apart from the sign),
which plays an important role in our theory.

III. A pseudo-concurrent vector field V, by definition, is one
satisfying

3) Since a closed form is locally integrable everywhere, the remark in p. 70 of
[1] contains some erroneous statement. This mistake made the proofs of Theorem 4.7
more complicated than needed.

4) It is also true that the projective space came into the theory by the intro-
duction of this singularity. In topological projective spaces, if W is an exceptional
one stated in p. 82 of [1], 9 (see p. 86 there) is the inverse of a covering map and
therefore not a 1-1 map. Then 9(s)r should be considered as a continuous curve over r.

5) The projection operator Pv acts rather on covector space T* than on vector
space Tx in the Finsler manifold. In fact, if Ze Sx, then II Z I[ depends only on x.
Hence the operator Pz which is defined by Pz(X*)=X*(Z)/IIZII (X, eTa) is one of

T* into itself,
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(5) V,--A*(m)a,+B*(m)VV+p,,V+p,V and VS,
where p are the components of Grad p(m). In what follows, we use
the abbreviation "p. c." for pseudo-concurrent. The pseudo-concurrency
of vector fields is an invariant concept, under conformality, as will be
shown later on.

The following lemma is easily obtained by a simple computation.
LEMMA. A vector field V’ satisfies 1) of Theorem A, if and only

if he equation: V[= --g,+C(x)VV wih V eS holds.
After making some computation, we have
PROPOSITION 1. A vector field V satisfies conditions 1) and 2)

of Theorem A, if and only if V is a p. c. vector field given by (5)
with this:

(6) PoGradI A*(x) l=Grad[ A*(x) 1exp p exp p
Let be the curvature vector of the tangent curve of a p.c.

vector field (5). Then we have
PROPOSITION 2.

( 7 ) =Grad p--P[Grad p.
COROLLARY. A p.c. vector field becomes a torse-forming one if

and only if the tangent curves are geodesics.
If in the above corollary V satisfies (6), then the corresponding

torse-forming vector field satisfies
( 8 ) PoGrad [A(x)J =Grad [A(x)],
where A(x) is defined in VI of [2].

These complete the proof of Theorem A.
REMARK. In proving Proposition 2, there is inevitable need for

(A) not to equal 0 at the point concerned . This is equivalent to
saying that the direction indicated by V is not parallel at x. As a

Vmatter of fact, setting Z=
il Vii"

we have Az--O at .
IV. The aim of this section is to make clear the geometric

meaning of the p.c. vector field and the conformal map of the re-
stricted kind.

A somewhat complicated computation is needed for the proofs of
the following lemmas, but we can not go into details.

LEMMA 1. For a p.c. vector field V, we have AIV*V=O.
LEMMA 2. Grad p’ e S,, where is the function having appeared

in (5).
From the latter we get
LFA 3. For a p.c. vector fidd V

( 9 Grad II V [[S.

6) We denote by Grad F(x) the covector field the value at x of which is Grad
EF(x)].
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On the other hand we can straightforwardly obtain the following
theorem of the important nature.

THEOREM C. A conformal map of the general knd rasfers a
p. c. vector field $o another p. c. vector field.

Using Lemma 2 and Theorem C we can find
THEOREM D. A vector field V is p.c. if and only if iS an be

reduced to a torse-forming one by a conformal map of the restricted
kind.

V. Let R_ be an (n--1)-cell or an (n--1)-cubic and let L be an
open interval. Then a conformal family is a diffeomorphism a of
R_L into a Riemann or Finsler manifold M such that a(R_{t})
and (R_{t,.}) are conformal (in the sense of the general kind) to
each other in the natural way, where t, t,.eL. We call the map
Lt-a(z,t) a tangen$ curve of the conformal family. Then the
parameter t is referred to as canonical.

With this setting another meaning of the p.c. vector field is
given by the following theorem, the proof of which is exactly the
same as that of [3].

THEOREM E. The existence of a p.c. vector field is equivalent
to that of a conformal family such that the curvature vector of the
tangent curves belongs to S at each point x.

Besides there is the natural correspondence between p.c. vector
fields and conformal families as well as in the ease of torse-forming
vector fields. Then the ratio of the metric form of a(R._X[t])and
a(R_ [t2}) is given by the function H(x) that is defined as follows.
Let x---a(z, t). Then we et

’, A[(10) H(x)-- exp ,, II V ]I
dr.

Finally we would like to attract the readers’ attention to the relation:

(11) dE-- dt

where s denotes the arc length of T,.
VI. Theorem B can be interpreted this way.
"In order that there is a torse-forming vector field of one of

these types:
(12) V,,-c(g,-- VV)

(14) V,=cg,,
it is necessary and suAcient that the metric form is conformally
separable in one of the ways stated in Theorem B respectively."

In fact if Vt-c’g,q-dVV for constants c and d, we have V,
:c(g,+/-VV) by setting V://d V’.
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We shall leave the proof of the above theorem for the author’s
forthcoming paper.
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