133. Some Analytical Properties of the Spectra of Normal Operators in Hilbert Spaces

By Sakuji INOUE

Faculty of Education, Kumamoto University (Comm. by K. KUNUGI, M.J.A., Nov. 13, 1961)

Definition. Let \mathfrak{H} be the complex abstract Hilbert space which is complete, separable and infinite dimensional; and let N_j , $j=1, 2, \cdots$, p, be bounded normal operators in \mathfrak{H} . We then define a complexvalued function $S(f, g; \lambda)$ of a complex variable λ by

 $S(f, g; \lambda) = \left(\left(\sum_{j=1}^{p} \sum_{\alpha=1}^{m_j} c_{\alpha j} (\lambda I - N_j)^{-\alpha} \right) f, g \right), \ \left(f \in \bigcap_{j=1}^{p} \mathfrak{D}((\lambda I - N_j)^{-m_j}), \ g \in \mathfrak{H} \right),$ under the assumption that the set of accumulation points of the point spectrum of each N_j is an at most denumerably infinite set.

Though f here is arbitrarily chosen in the domain $\bigcap_{j=1}^{p} \mathfrak{D}((\lambda I - N_j)^{-m_j})$ so that the function S is significant, the domains of f in the results of integrations of S along such curves as will afterwards be defined are extended respectively: because the respective integrals of $\sum_{j=1}^{p} \sum_{\alpha=1}^{m_j} c_{\alpha_j}(\lambda I - N_j)^{-\alpha}$ are reduced to simplified operators as we shall see later on.

As will afterwards be verified immediately from the integral expressions and the expansions of $N_j, j=1, 2, \dots, p$, the following statements are valid:

1° $S(f, g; \lambda)$ is regular in the intersection of all resolvent sets of $N_j, j=1, 2, \cdots, p$, only;

2° every isolated eigenvalue of N_j , $j=1, 2, \dots, p$, is a pole with order m_j of $S(f, g; \lambda)$;

 3° though every accumulation point of isolated eigenvalues of each N_j is a non-isolated essential singularity of $S(f, g; \lambda)$ in the sense of the function theory, $S(f, g; \lambda)$ has the principal part of the expansion at that point when and only when it belongs to the point spectrum of the N_j ;

 4° every point belonging to the union of the continuous spectra of N_j , $j=1, 2, \dots, p$, is a non-regular point of $S(f, g; \lambda)$, but not a usual singularity in the sense of the function theory unless it is an accumulation point of isolated eigenvalues of any one of N_j , $j=1, 2, \dots, p$.

In particular, we are interested in the case where $S(f, g; \lambda)$ has a denumerably infinite set of non-isolated essential singularities. We shall discuss the integral of $S(f, g; \lambda)$ along a rectifiable closed Jordan curve comprising those denumerably infinite essential singularities No. 9] Some Analytical Properties of the Spectra of Normal Operators

inside itself.

Theorem A. Let D be a domain whose boundary ∂D is a rectifiable closed Jordan curve; let $\{z_{\nu}^{(j)}\}_{\nu=1,2,\cdots}$ be the point spectra of bounded normal operators $N_j, j=1, 2, \cdots, p$, in \mathfrak{H} ; let $\{z_{\nu}^{(j)}\}_{\substack{\nu=1,2,\cdots,p\\ j=1,2,\cdots,p}}$ and their accumulation points be completely contained in D; let $K_{\nu}^{(j)}$ be the eigenprojector of N_j corresponding to the eigenvalue $z_{\nu}^{(j)}$; let $S(f, g; \lambda)$ defined above be regular with respect to λ in the closure \overline{D} of D except for $\{z_{\nu}^{(j)}\}_{\substack{\nu=1,2,\cdots,p\\ j=1,2,\cdots,p}}$ and their accumulation points which are denumerably infinite in number; and let $\varphi(\lambda)$ be an arbitrarily given function regular in \overline{D} . Then

$$(1) \qquad \frac{1}{2\pi i} \int_{\partial D} \varphi(\lambda) S(f, g; \lambda) d\lambda = \sum_{j=1}^{p} \sum_{\alpha=1}^{m_j} \sum_{\nu=1}^{\infty} \frac{c_{\alpha j} \varphi^{(\alpha-1)}(z_{\nu}^{(j)})}{(\alpha-1)!} (K_{\nu}^{(j)}f, g),$$
$$(0!=1, \varphi^{(0)}(z_{\nu}^{(j)}) = \varphi(z_{\nu}^{(j)})),$$

where the curvilinear integration is taken in the counterclockwise direction; and moreover the series of the right-hand side converges absolutely.

Proof. Since N_j , $j=1, 2, \dots, p$, are bounded normal operators in \mathfrak{H} , it is first clear that there exists such a domain D as was described in the statement of the present theorem.

Now, let G be the complex z-plane, $\Delta(N_j)$ the continuous spectrum of N_j , and $\{K^{(j)}(z)\}$ the complex spectral family associated with N_j . Then we have

$$\sum_{i=1}^{p} \sum_{\alpha=1}^{m_j} c_{\alpha j} (\lambda I - N_j)^{-\alpha} = \sum_{j=1}^{p} \sum_{\alpha=1}^{m_j} \int_G \frac{c_{\alpha j}}{(\lambda - z)^{\alpha}} dK^{(j)}(z) \quad (\lambda \in \partial D)$$
$$= \sum_{j=1}^{p} \sum_{\alpha=1}^{m_j} \left\{ \sum_{\nu=1}^{\infty} \frac{c_{\alpha j} K_{\nu}^{(j)}}{(\lambda - z_{\nu}^{(j)})^{\alpha}} + \int_{d(N_j)} \frac{c_{\alpha j}}{(\lambda - z)^{\alpha}} dK^{(j)}(z) \right\}.$$

If we next denote by $z_{(j,n)}$ one of accumulation points of $\{z_{\nu}^{(j)}\}_{\nu=1,2,\dots}$ such that it belongs to the continuous spectrum of N_{j} , then, by the hypothesis on $S(f, g; \lambda)$, every point $z \in \mathcal{A}(N_{j}) - \{z_{(j,n)}\}, j=1, 2, \dots, p$, lies outside ∂D and hence

$$\frac{1}{2\pi i} \int_{\partial D} \frac{c_{\alpha j} \varphi(\lambda)}{(\lambda-z)^{\alpha}} d\lambda = 0, \ (z \in \Delta(N_j) - \{z_{(j,n)}\}; \ j=1, 2 \cdots, p; \alpha = 1, 2, \cdots, m_j).$$

On the other hand, since, by hypotheses, $\{z_{\nu}^{(j)}\}_{\substack{\nu=1,2,\dots,p\\j=1,2,\dots,p}}$ and their accumulation points lie inside ∂D , we have

$$\frac{1}{2\pi i} \int_{\partial D} \frac{c_{\alpha j} \varphi(\lambda)}{(\lambda - z_{\nu}^{(j)})^{\alpha}} d\lambda = \frac{c_{\alpha j} \varphi^{(\alpha - 1)}(z_{\nu}^{(j)})}{(\alpha - 1)!}, \ (\alpha = 1, 2, \cdots, m_{j});$$

and moreover we can derive without difficulty the relation

$$\int_{\partial D} \int_{\overline{D}} \frac{c_{\alpha j} \varphi(\lambda)}{(\lambda - z)^{\alpha}} dK^{(j)}(z) d\lambda = \int_{\overline{D}} \int_{\partial D} \frac{c_{\alpha j} \varphi(\lambda)}{(\lambda - z)^{\alpha}} d\lambda dK^{(j)}(z)$$

by considering the limit of a sequence of approximation sums of the

S. INOUE

line integral of the left-hand side.

Furthermore, if we donote by $\{E^{(j)}(\Re(z))\}$ and $\{F^{(j)}(\Im(z))\}$ the spectral families associated with the self-adjoint operators $\frac{1}{2}(N_j + N_j^*)$ and $\frac{1}{2i}(N_j - N_j^*)$ respectively and consider the rectangle δ defined by $(\Re(z_{(j,n)}) - \varepsilon < \Re(z) \leq \Re(z_{(j,n)}), \Im(z_{(j,n)}) - \varepsilon' < \Im(z) \leq \Im(z_{(j,n)}))$

where ε and ε' are sufficiently small positive numbers, then

$$K^{(j)}(\delta) = [E^{(j)}(\Re(z_{(j,n)})) - E^{(j)}(\Re(z_{(j,n)}) - \varepsilon)] \\ \times [F^{(j)}(\Im(z_{(j,n)})) - F^{(j)}(\Im(z_{(j,n)}) - \varepsilon')]$$

and it converges in the sense of norm to the null operator as ε and ε' both tend to zero: for otherwise $z_{(j,n)}$ would become an eigenvalue of N_j , contrary to the assumption on $z_{(j,n)}$. On the other hand, the set $\{z_{(j,n)}\}$ of such points $z_{(j,n)}$, $n=1, 2, \cdots$, as we described above is an at most denumerably infinite set and lies inside ∂D . Hence

$$\frac{1}{2\pi i} \int_{\partial D} \int_{\{Z_{(j,n)}\}} \frac{c_{\alpha j} \varphi(\lambda)}{(\lambda-z)^{\alpha}} dK^{(j)}(z) d\lambda = \frac{c_{\alpha j}}{(\alpha-1)!} \int_{\{Z_{(j,n)}\}} \varphi^{(\alpha-1)}(z) dK^{(j)}(z) = 0$$

for $\alpha = 1, 2, \dots, m_j$ and $j = 1, 2, \dots, p$.

In consequence, we can find with the help of these results that

$$\begin{split} \frac{1}{2\pi i} \int\limits_{\partial D} \varphi(\lambda) S(f,g;\lambda) d\lambda &= \frac{1}{2\pi i} \int\limits_{\partial D} \int\limits_{G} \sum\limits_{j=1}^{p} \sum\limits_{\alpha=1}^{m_j} \frac{c_{\alpha j} \varphi(\lambda)}{(\lambda-z)^{\alpha}} d(K^{(j)}(z)f,g) d\lambda \\ &= \frac{1}{2\pi i} \sum\limits_{j=1}^{p} \sum\limits_{\alpha=1}^{m_j} \int\limits_{\partial D} \int\limits_{D} \frac{c_{\alpha j} \varphi(\lambda)}{(\lambda-z)^{\alpha}} d(K^{(j)}(z)f,g) d\lambda \\ &= \sum\limits_{j=1}^{p} \sum\limits_{\alpha=1}^{m_j} \sum\limits_{\nu=1}^{\infty} \frac{c_{\alpha j} \varphi^{(\alpha-1)}(z^{(j)}_{\nu})}{(\alpha-1)!} (K^{(j)}_{\nu}f,g). \end{split}$$

It remains only to prove that the series in (1) converges absolutely.

Let $\mathfrak{M}^{(j)}$ be the subspace determined by all eigenelements of N_j and let $\{\varphi_k^{(j)}\}$ be an orthonormal set determining $\mathfrak{M}^{(j)}$. Then we can write

$$\begin{pmatrix} \sum_{\nu=1}^{\infty} K_{\nu}^{(j)} \end{pmatrix} f = \sum_{k=1}^{\infty} a_{k} \varphi_{k}^{(j)}, \\ \begin{pmatrix} \sum_{\nu=1}^{\infty} K_{\nu}^{(j)} \end{pmatrix} g = \sum_{k=1}^{\infty} b_{k} \varphi_{k}^{(j)}, \\ \text{where } \sum_{\nu=1}^{\infty} K_{\nu}^{(j)} \leq I, a_{k} = \left(\left(\sum_{\nu=1}^{\infty} K_{\nu}^{(j)} \right) f, \varphi_{k}^{(j)} \right) \text{ and } b_{k} = \left(\left(\sum_{\nu=1}^{\infty} K_{\nu}^{(j)} \right) g, \varphi_{k}^{(j)} \right), \\ k = 1, 2, \cdots. \quad \text{On the other hand, since } \left(\sum_{\nu=1}^{\infty} K_{\nu}^{(j)} \right) f \text{ and } \left(\sum_{\nu=1}^{\infty} K_{\nu}^{(j)} \right) g \text{ both} \\ \text{are elements in } \mathfrak{M}^{(j)}, \sum_{k=1}^{\infty} |a_{k}|^{2} < \infty \text{ and } \sum_{k=1}^{\infty} |b_{k}|^{2} < \infty. \quad \text{Moreover, since by} \\ \text{hypotheses } \varphi(\lambda) \text{ is regular in } \overline{D}, \text{ there exists a finite positive number} \\ M \text{ such that } |\varphi^{(\alpha-1)}(\lambda)| \leq M, \alpha = 1, 2, \cdots, m_{j}, \text{ in } \overline{D}. \quad \text{By virtue of} \\ \text{Schwarz's inequality we have therefore} \end{cases}$$

568

No. 9] Some Analytical Properties of the Spectra of Normal Operators

$$\sum_{
u=1}^{\infty} |(K_{
u}^{(j)}f,g)| | arphi^{(lpha-1)}(z_{
u}^{(j)})| = \sum_{
u=1}^{\infty} |(K_{
u}^{(j)}f,K_{
u}^{(j)}g)| | arphi^{(lpha-1)}(z_{
u}^{(j)})| \\ \leq \sum_{
u=1}^{\infty} ||K_{
u}^{(j)}f|| ||K_{
u}^{(j)}g|| M \\ \leq rac{M}{2} \sum_{
u=1}^{\infty} (||K_{
u}^{(j)}f||^{2} + ||K_{
u}^{(j)}g||^{2}), \\ \leq rac{M}{2} \Big(\sum_{k=1}^{\infty} |a_{k}|^{2} + \sum_{k=1}^{\infty} |b_{k}|^{2} \Big) < \infty.$$

Thus the theorem has been proved.

Corollary 1. Let N be a bounded normal operator, let the accumulation points of its point spectrum form a denumerably infinite set, let D be a domain whose boundary ∂D is a rectifiable closed Jordan curve belonging to the resolvent set of N and contains completely the point spectrum $\{z_n\}$ of N and its accumulation points inside itself, let K_p be the eigenprojector of N corresponding to the eigenvalue z_p , and let g_1 be the solution of the equation $\lambda x - Nx = f$ where $f \in \mathfrak{D}((\lambda I - N)^{-1})$. If ∂D does not contain inside itself all points of the continuous spectrum of N except its subset as a set of accumulation points of $\{z_p\}$, then for every $g \in \mathfrak{H}$

$$\frac{1}{2\pi i}\int_{\partial D}(g_{\lambda},g)d\lambda = \sum_{\nu=1}^{\infty}(K_{\nu}f,g),$$

where the line integration is taken in the counterclockwise direction; and moreover the series of the right-hand side converges absolutely.

Proof. This is a direct consequence of Theorem A.

Remark. It is to be noted that the function (g_{λ}, g) of a complex variable λ has denumerably infinite non-isolated essential singularities inside ∂D .

Corollary 2. Let N be a bounded normal operator in \mathfrak{H} , let D be a domain whose boundary ∂D is positively oriented and satisfies all the conditions and the assumption stated in Corollary 1, and let $\{\varphi_{\mu}\}$ be a complete orthonormal set in \mathfrak{H} . If

(2)
$$\frac{1}{2\pi i} \int_{\partial D} \lambda ((\lambda I - N)^{-1} \cdot \varphi_{\mu}, \varphi_{\mu}) d\lambda$$

does not vanish, the numerical value of this integral gives an eigenvalue of N and φ_{μ} is a normalized eigenelement of N corresponding to that eigenvalue. (2) here means, however,

$$\left(rac{1}{2\pi i}\int\limits_{\partial\mathcal{D}}\lambda(\lambda I-N)^{-1}d\lambda\cdot\varphi_{\mu},\varphi_{\mu}
ight)$$

different from the original meaning of the left member of (1).

Proof. Let z_{ν} be an arbitrary eigenvalue of N, K_{ν} the corresponding eigenprojector of N, and f_{ν} an arbitrary eigenelement of N corresponding to the eigenvalue z_{ν} . Since f_{ν} is given by a linear combination of elements belonging to $\{\varphi_{\mu}\}$, we can and do write f_{ν}

569

[Vol. 37,

 $=\sum_{k\geq 1} a_k \varphi_{n_k}, \ \varphi_{n_k} \in \{\varphi_\mu\}$. Then, by making use of the relation $K_\nu f_\nu = f_\nu$ and Parseval's formula, we can find without difficulty the relation $K_\nu \varphi_{n_k} = \varphi_{n_k}$. This result shows that there exists necessarily an element of $\{\varphi_\mu\}$ as a normalized eigenelement of N for each of the eigenvalues. Since it is easily verified that the result of Theorem A is also applicable in our case, we obtain

$$\frac{1}{2\pi i}\int_{\partial D}\lambda((\lambda I-N)^{-1}\cdot\varphi_{\mu},\varphi_{\mu})d\lambda = \sum_{\nu} z_{\nu}(K_{\nu}\varphi_{\mu},\varphi_{\mu}),$$

where \sum_{ν} denotes the sum for all eigenvalues of N. We find therefore that the integral (2) never vanishes when and only when φ_{μ} is a normalized eigenelement corresponding to a non-zero eigenvalue of N and that the non-zero numerical value of (2) gives the eigenvalue of N corresponding to the eigenelement φ_{μ} .

Corollary 3. Let N be a bounded normal operator in §, let D be a domain whose boundary ∂D is a circle with center at the origin and radius R > ||N|| and belongs to the resolvent set of N, and let f be an eigenelement of N. Then the eigenvalue of N corresponding to the eigenelement f is given by

$$\frac{1}{2\pi i ||f||^2} \int_{\partial D} \lambda((\lambda I - N)^{-1} \cdot f, f) d\lambda,$$

where ∂D is positively oriented.

Proof. Let $\Delta(N)$ be the continuous spectrum of N, $\{K(z)\}$ the complex spectral family associated with N, and K_{ν} , $\{z_{\nu}\}$ the same symbols as those defined in Corollary 1. Since it is easily verified by hypotheses that R is greater than the spectral radius of N, and since, hence, ∂D has $\{z_{\nu}\}$ and $\Delta(N)$ inside itself, by reasoning like that used to prove (1) we obtain

$$\begin{split} \frac{1}{2\pi i} \int_{\partial D} \lambda ((\lambda I - N)^{-1} f, f) d\lambda &= \sum_{\nu} z_{\nu} || K_{\nu} f ||^{2} + \frac{1}{2\pi i} \int_{\partial D} \int_{G} \frac{\lambda}{\lambda - z} d || K(z) f ||^{2} d\lambda \\ &= \sum_{\nu} z_{\nu} || K_{\nu} f ||^{2} + \frac{1}{2\pi i} \int_{d(N)} \int_{\partial D} \left(1 + \frac{z}{\lambda - z} \right) d\lambda d || K(z) f ||^{2} \\ &= \sum_{\nu} z_{\nu} || K_{\nu} f ||^{2} + \int_{d(N)} z d || K(z) f ||^{2}, \end{split}$$

where \sum_{ν} denotes the sum for all eigenvalues of N. In addition to it, by the definition on f, clearly $K(\delta)f$ vanishes for every subset δ of $\Delta(N)$ and there exists a unique eigenvalue $z_{\alpha} \in \{z_{\nu}\}$ such $\sum_{\nu} z_{\nu} ||K_{\nu}f||^{2} = z_{\alpha} ||f||^{2}$.

In consequence, we have the desired relation

$$\frac{1}{2\pi i ||f||^2} \int_{\partial D} \lambda((\lambda I - N)^{-1} \cdot f, f) d\lambda = z_a.$$

570