133. Some Analytical Properties of the Spectra of Normal Operators in Hilbert Spaces

By Sakuji Inoue
Faculty of Education, Kumamoto University
(Comm. by K. Kunugi, m.J.A., Nov. 13, 1961)

Definition. Let $\mathfrak{5}$ be the complex abstract Hilbert space which is complete, separable and infinite dimensional; and let $N_{j}, j=1,2, \cdots$, p, be bounded normal operators in 5 . We then define a complexvalued function $S(f, g ; \lambda)$ of a complex variable λ by

$$
S(f, g ; \lambda)=\left(\left(\sum_{j=1}^{p} \sum_{\alpha=1}^{m_{j}} c_{\alpha j}\left(\lambda I-N_{j}\right)^{-\alpha}\right) f, g\right),\left(f \in \bigcap_{j=1}^{p} \mathfrak{D}\left(\left(\lambda I-N_{j}\right)^{-m_{j}}\right), g \in \mathfrak{F}\right)
$$

under the assumption that the set of accumulation points of the point spectrum of each N_{j} is an at most denumerably infinite set.

Though f here is arbitrarily chosen in the domain $\bigcap_{j=1}^{\infty} \mathfrak{D}\left(\left(\lambda I-N_{j}\right)^{-m_{j}}\right)$ so that the function S is significant, the domains of f in the results of integrations of S along such curves as will afterwards be defined are extended respectively: because the respective integrals of $\sum_{j=1}^{p} \sum_{\alpha=1}^{m_{j}}$ $c_{\alpha_{j}}\left(\lambda I-N_{j}\right)^{-\alpha}$ are reduced to simplified operators as we shall see later on.

As will afterwards be verified immediately from the integral expressions and the expansions of $N_{j}, j=1,2, \cdots, p$, the following statements are valid:
$1^{\circ} S(f, g ; \lambda)$ is regular in the intersection of all resolvent sets of $N_{j}, j=1,2, \cdots, p$, only;
2° every isolated eigenvalue of $N_{j}, j=1,2, \cdots, p$, is a pole with order m_{j} of $S(f, g ; \lambda)$;
3° though every accumulation point of isolated eigenvalues of each N_{j} is a non-isolated essential singularity of $S(f, g ; \lambda)$ in the sense of the function theory, $S(f, g ; \lambda)$ has the principal part of the expansion at that point when and only when it belongs to the point spectrum of the N_{j};
4° every point belonging to the union of the continuous spectra of $N_{j}, j=1,2, \cdots, p$, is a non-regular point of $S(f, g ; \lambda)$, but not a usual singularity in the sense of the function theory unless it is an accumulation point of isolated eigenvalues of any one of $N_{j}, j=1,2, \cdots, p$.

In particular, we are interested in the case where $S(f, g ; \lambda)$ has a denumerably infinite set of non-isolated essential singularities. We shall discuss the integral of $S(f, g ; \lambda)$ along a rectifiable closed Jordan curve comprising those denumerably infinite essential singularities
inside itself.
Theorem A. Let D be a domain whose boundary ∂D is a rectifiable closed Jordan curve; let $\left\{z_{\nu}^{(j)}\right\}_{\nu=1,2, \ldots}$ be the point spectra of bounded normal operators $N_{j}, j=1,2, \cdots, p$, in \mathfrak{S}; let $\left\{z_{\nu}^{(j)}\right\}_{\substack{\nu=1,2, \cdots, p \\ j=1,2, \cdots, p}}$ and their accumulation points be completely contained in D; let $K_{\nu}^{(j)}$ be the eigenprojector of N_{j} corresponding to the eigenvalue $z_{j}^{(j)}$; let $S(f, g ; \lambda)$ defined above be regular with respect to λ in the closure \bar{D} of D except for $\left\{z_{\nu}^{(j)}\right\}_{\substack{\nu=1,2, \cdots, p \\ j=1,2, \cdots, p}}$ and their accumulation points which are denumerably infinite in number; and let $\varphi(\lambda)$ be an arbitrarily given function regular in \bar{D}. Then

$$
\begin{gather*}
\frac{1}{2 \pi i} \int_{\partial D} \varphi(\lambda) S(f, g ; \lambda) d \lambda=\sum_{j=1}^{p} \sum_{\alpha=1}^{m_{j}} \sum_{\nu=1}^{\infty} \frac{c_{\alpha j} \varphi^{(\alpha-1)}\left(z_{\nu}^{(j)}\right)}{(\alpha-1)!}\left(K_{\nu}^{(j)} f, g\right), \tag{1}\\
\left(0!=1, \varphi^{(0)}\left(z_{\nu}^{(j)}\right)=\varphi\left(z_{\nu}^{(j)}\right)\right),
\end{gather*}
$$

where the curvilinear integration is taken in the counterclockwise direction; and moreover the series of the right-hand side converges absolutely.

Proof. Since $N_{j}, j=1,2, \cdots, p$, are bounded normal operators in \mathfrak{F}, it is first clear that there exists such a domain D as was described in the statement of the present theorem.

Now, let G be the complex z-plane, $\Delta\left(N_{j}\right)$ the continuous spectrum of N_{j}, and $\left\{K^{(j)}(z)\right\}$ the complex spectral family associated with N_{j}. Then we have

$$
\begin{aligned}
\sum_{i=1}^{p} \sum_{\alpha=1}^{m_{j}} c_{\alpha j}\left(\lambda I-N_{j}\right)^{-\alpha} & =\sum_{j=1}^{p} \sum_{\alpha=1}^{m_{j}} \int \frac{c_{\alpha j}}{(\lambda-z)^{\alpha}} d K^{(j)}(z) \quad(\lambda \in \partial D) \\
& =\sum_{j=1}^{p} \sum_{\alpha=1}^{m_{j}}\left\{\sum_{\nu=1}^{\infty} \frac{c_{\alpha j} K_{\nu}^{(j)}}{\left(\lambda-z_{\nu}^{(j)}\right)^{\alpha}}+\int_{\Delta\left(N_{j} j^{\prime}\right.} \frac{c_{\alpha j}}{(\lambda-z)^{\alpha}} d K^{(j)}(z)\right\} .
\end{aligned}
$$

If we next denote by $z_{(j, n)}$ one of accumulation points of $\left\{z_{v}^{(j)}\right\}_{\nu=1,2, \ldots}$ such that it belongs to the continuous spectrum of N_{j}, then, by the hypothesis on $S(f, g ; \lambda)$, every point $z \in \Delta\left(N_{j}\right)-\left\{z_{(j, n)}\right\}$, $j=1,2, \cdots, p$, lies outside ∂D and hence

$$
\frac{1}{2 \pi i} \int_{\partial D} \frac{c_{\alpha j} \varphi(\lambda)}{(\lambda-z)^{\alpha}} d \lambda=0,\left(z \in \Delta\left(N_{j}\right)-\left\{z_{(j, n)}\right\} ; j=1,2 \cdots, p ; \alpha=1,2, \cdots, m_{j}\right) .
$$

On the other hand, since, by hypotheses, $\left\{\begin{array}{c}\left.z_{\nu}^{(j)}\right\}_{\nu=1,2, \ldots, p}^{j=1,2, \cdots, p}\end{array}\right.$ and their accumulation points lie inside ∂D, we have

$$
\frac{1}{2 \pi i} \int_{\partial D} \frac{c_{\alpha j} \varphi(\lambda)}{\left(\lambda-z_{j}^{(j)}\right)^{\alpha}} d \lambda=\frac{c_{\alpha j} \varphi^{(\alpha-1)}\left(z_{\nu}^{(j)}\right)}{(\alpha-1)!},\left(\alpha=1,2, \cdots, m_{j}\right) ;
$$

and moreover we can derive without difficulty the relation

$$
\int_{\partial D} \int_{\bar{D}} \frac{c_{\alpha_{j}} \varphi(\lambda)}{(\lambda-z)^{\alpha}} d K^{(j)}(z) d \lambda=\int_{\bar{D}} \int_{\partial D} \frac{c_{\alpha_{j}} \varphi(\lambda)}{(\lambda-z)^{\alpha}} d \lambda d K^{(j)}(z)
$$

by considering the limit of a sequence of approximation sums of the
line integral of the left-hand side.
Furthermore, if we donote by $\left\{E^{(j)}(\mathfrak{H}(z))\right\}$ and $\left\{F^{(j)}(\mathfrak{Y}(z))\right\}$ the spectral families associated with the self-adjoint operators $\frac{1}{2}\left(N_{j}+N_{j}^{*}\right)$ and $\frac{1}{2 i}\left(N_{j}-N_{j}^{*}\right)$ respectively and consider the rectangle δ defined by

$$
\left(\Re\left(z_{(j, n)}\right)-\varepsilon<\mathfrak{R}(z) \leqq \Re\left(z_{(j, n)}\right), \mathfrak{Y}\left(z_{(j, n)}\right)-\varepsilon^{\prime}<\mathfrak{F}(z) \leqq \mathfrak{Y}\left(z_{(j, n)}\right)\right)
$$

where ε and ε^{\prime} are sufficiently small positive numbers, then

$$
\begin{aligned}
K^{(j)}(\delta)= & {\left[E^{(j)}\left(\Re\left(z_{(j, n)}\right)\right)-E^{(j)}\left(\Re\left(z_{(j, n)}\right)-\varepsilon\right)\right] } \\
& \times\left[F^{(j)}\left(\mathcal{Y}\left(z_{(j, n)}\right)\right)-F^{(j)}\left(\mathfrak{Y}\left(z_{(j, n)}\right)-\varepsilon^{\prime}\right)\right]
\end{aligned}
$$

and it converges in the sense of norm to the null operator as ε and ε^{\prime} both tend to zero: for otherwise $z_{(j, n)}$ would become an eigenvalue of N_{j}, contrary to the assumption on $z_{(j, n)}$. On the other hand, the set $\left\{z_{(j, n)}\right\}$ of such points $z_{(j, n)}, n=1,2, \cdots$, as we described above is an at most denumerably infinite set and lies inside ∂D. Hence

$$
\frac{1}{2 \pi i} \int_{\partial D} \int_{\left\{z_{(j, n)\}}\right\}} \frac{c_{\alpha j} \varphi(\lambda)}{(\lambda-z)^{\alpha}} d K^{(j)}(z) d \lambda=\frac{c_{\alpha j}}{(\alpha-1)!} \int_{\left\{z_{(j, n)\}}\right.} \varphi^{(\alpha-1)}(z) d K^{(j)}(z)=0
$$

for $\alpha=1,2, \cdots, m_{j}$ and $j=1,2, \cdots, p$.
In consequence, we can find with the help of these results that

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\partial D} \varphi(\lambda) S(f, g ; \lambda) d \lambda & =\frac{1}{2 \pi i} \int_{\partial} \int_{\sigma} \sum_{j=1}^{p} \sum_{\alpha=1}^{m_{j}} \frac{c_{\alpha j} \varphi(\lambda)}{(\lambda-z)^{\alpha}} d\left(K^{(j)}(z) f, g\right) d \lambda \\
& =\frac{1}{2 \pi i} \sum_{j=1}^{p} \sum_{\alpha=1}^{m_{j}} \int_{\partial D} \int_{\frac{D}{D}} \frac{c_{\alpha j} \varphi(\lambda)}{(\lambda-z)^{\alpha}} d\left(K^{(j)}(z) f, g\right) d \lambda \\
& =\sum_{j=1}^{p} \sum_{\alpha=1}^{m_{j}} \sum_{\nu=1}^{\infty} \frac{c_{\alpha j} \varphi^{(\alpha-1)}\left(z_{j}^{(j)}\right)}{(\alpha-1)!}\left(K_{\nu}^{(j)} f, g\right) .
\end{aligned}
$$

It remains only to prove that the series in (1) converges absolutely.

Let $\mathfrak{M}^{(j)}$ be the subspace determined by all eigenelements of N_{j} and let $\left\{\varphi_{k}^{(j)}\right\}$ be an orthonormal set determining $\mathfrak{M}^{(j)}$. Then we can write

$$
\begin{aligned}
& \left(\sum_{\nu=1}^{\infty} K_{\nu}^{(j)}\right) f=\sum_{k=1}^{\infty} a_{k} \varphi_{k}^{(j)}, \\
& \left(\sum_{\nu=1}^{\infty} K_{\nu}^{(j)}\right) g=\sum_{k=1}^{\infty} b_{k} \varphi_{k}^{(j)},
\end{aligned}
$$

where $\sum_{\nu=1}^{\infty} K_{\nu}^{(j)} \leqq I, a_{k}=\left(\left(\sum_{\nu=1}^{\infty} K_{\nu}^{(j)}\right) f, \varphi_{k}^{(j)}\right)$ and $b_{k}=\left(\left(\sum_{\nu=1}^{\infty} K_{\nu}^{(j)}\right) g, \varphi_{k}^{(j)}\right)$, $k=1,2, \cdots$. On the other hand, since $\left(\sum_{\nu=1}^{\infty} K_{\nu}^{(j)}\right) f$ and $\left(\sum_{\nu=1}^{\infty} K_{\nu}^{(j)}\right) g$ both are elements in $\mathfrak{M}^{(j)}, \sum_{k=1}^{\infty}\left|a_{k}\right|^{2}<\infty$ and $\sum_{k=1}^{\infty}\left|b_{k}\right|^{2}<\infty$. Moreover, since by hypotheses $\varphi(\lambda)$ is regular in \bar{D}, there exists a finite positive number M such that $\left|\varphi^{(\alpha-1)}(\lambda)\right| \leqq M, \alpha=1,2, \cdots, m_{j}$, in \bar{D}. By virtue of Schwarz's inequality we have therefore

$$
\begin{aligned}
\sum_{\nu=1}^{\infty}\left|\left(K_{\nu}^{(j)} f, g\right)\right|\left|\varphi^{(\alpha-1)}\left(z_{\nu}^{(j)}\right)\right| & =\sum_{\nu=1}^{\infty}\left|\left(K_{\nu}^{(j)} f, K_{\nu}^{(j)} g\right)\right|\left|\varphi^{(\alpha-1)}\left(z_{\nu}^{(j)}\right)\right| \\
& \leqq \sum_{\nu=1}^{\infty} \mid\left\|K_{\nu}^{(j)} f\right\|\left\|K_{\nu}^{(j)} g\right\| M \\
& \leqq \frac{M}{2} \sum_{\nu=1}^{\infty}\left(\left\|K_{\nu}^{(j)} f\right\|^{2}+\left\|K_{\nu}^{(j)} g\right\|^{2}\right) \\
& \leqq \frac{M}{2}\left(\sum_{k=1}^{\infty}\left|a_{k}\right|^{2}+\sum_{k=1}^{\infty}\left|b_{k}\right|^{2}\right)<\infty .
\end{aligned}
$$

Thus the theorem has been proved.
Corollary 1. Let N be a bounded normal operator, let the accumulation points of its point spectrum form a denumerably infinite set, let D be a domain whose boundary ∂D is a rectifiable closed Jordan curve belonging to the resolvent set of N and contains completely the point spectrum $\left\{z_{\nu}\right\}$ of N and its accumulation points inside itself, let K_{ν} be the eigenprojector of N corresponding to the eigenvalue z_{ν}, and let g_{λ} be the solution of the equation $\lambda x-N x=f$ where $f \in \mathfrak{D}\left((\lambda I-N)^{-1}\right)$. If ∂D does not contain inside itself all points of the continuous spectrum of N except its subset as a set of accumulation points of $\left\{z_{\nu}\right\}$, then for every $g \in \mathfrak{g}$

$$
\frac{1}{2 \pi i} \int_{\partial D}\left(g_{\nu}, g\right) d \lambda=\sum_{\nu=1}^{\infty}\left(K_{\nu} f, g\right),
$$

where the line integration is taken in the counterclockwise direction; and moreover the series of the right-hand side converges absolutely.

Proof. This is a direct consequence of Theorem A.
Remark. It is to be noted that the function (g_{λ}, g) of a complex variable λ has denumerably infinite non-isolated essential singularities inside ∂D.

Corollary 2. Let N be a bounded normal operator in \mathfrak{g}, let D be a domain whose boundary ∂D is positively oriented and satisfies all the conditions and the assumption stated in Corollary 1, and let $\left\{\varphi_{\mu}\right\}$ be a complete orthonormal set in \mathfrak{K}. If

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{\partial D} \lambda\left((\lambda I-N)^{-1} \cdot \varphi_{\mu}, \varphi_{\mu}\right) d \lambda \tag{2}
\end{equation*}
$$

does not vanish, the numerical value of this integral gives an eigenvalue of N and φ_{μ} is a normalized eigenelement of N corresponding to that eigenvalue. (2) here means, however,

$$
\left(\frac{1}{2 \pi i} \int_{\partial D} \lambda(\lambda I-N)^{-1} d \lambda \cdot \varphi_{\mu}, \varphi_{\mu}\right)
$$

different from the original meaning of the left member of (1).
Proof. Let z_{ν} be an arbitrary eigenvalue of N, K_{v} the corresponding eigenprojector of N, and f_{ν} an arbitrary eigenelement of N corresponding to the eigenvalue z_{ν}. Since f_{ν} is given by a linear combination of elements belonging to $\left\{\varphi_{\mu}\right\}$, we can and do write f_{ν}
$=\sum_{k \leq 1} a_{k} \varphi_{n_{k}}, \varphi_{n_{k}} \in\left\{\varphi_{\mu}\right\}$. Then, by making use of the relation $K_{\nu} f_{\nu}=f_{\nu}$ and Parseval's formula, we can find without difficulty the relation $K_{\nu} \varphi_{n_{k}}=\varphi_{n_{k}}$. This result shows that there exists necessarily an element of $\left\{\varphi_{\mu}\right\}$ as a normalized eigenelement of N for each of the eigenvalues. Since it is easily verified that the result of Theorem A is also applicable in our case, we obtain

$$
\frac{1}{2 \pi i} \int_{\partial D} \lambda\left((\lambda I-N)^{-1} \cdot \varphi_{\mu}, \varphi_{\mu}\right) d \lambda=\sum_{\nu} z_{\nu}\left(K_{\nu} \varphi_{\mu}, \varphi_{\mu}\right),
$$

where \sum_{ν} denotes the sum for all eigenvalues of N. We find therefore that the integral (2) never vanishes when and only when φ_{μ} is a normalized eigenelement corresponding to a non-zero eigenvalue of N and that the non-zero numerical value of (2) gives the eigenvalue of N corresponding to the eigenelement φ_{μ}.

Corollary 3. Let N be a bounded normal operator in \mathfrak{j}, let D be a domain whose boundary ∂D is a circle with center at the origin and radius $R>\|N\|$ and belongs to the resolvent set of N, and let f be an eigenelement of N. Then the eigenvalue of N corresponding to the eigenelement f is given by

$$
\frac{1}{2 \pi i\|f\|^{2}} \int_{\partial D} \lambda\left((\lambda I-N)^{-1} \cdot f, f\right) d \lambda,
$$

where ∂D is positively oriented.
Proof. Let $\Delta(N)$ be the continuous spectrum of $N,\{K(z)\}$ the complex spectral family associated with N, and $K_{\nu},\left\{z_{\nu}\right\}$ the same symbols as those defined in Corollary 1. Since it is easily verified by hypotheses that R is greater than the spectral radius of N, and since, hence, ∂D has $\left\{z_{\nu}\right\}$ and $\Delta(N)$ inside itself, by reasoning like that used to prove (1) we obtain

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\partial D} \lambda\left((\lambda I-N)^{-1} f, f\right) d \lambda & =\sum_{\nu} z_{\nu}\left\|K_{\nu} f\right\|^{2}+\frac{1}{2 \pi i} \int_{\partial D} \int_{G} \frac{\lambda}{\lambda-z} d\|K(z) f\|^{2} d \lambda \\
& =\sum_{\nu} z_{\nu}\left\|K_{\nu} f\right\|^{2}+\frac{1}{2 \pi i} \int_{\Delta(N)} \int_{\partial D}\left(1+\frac{z}{\lambda-z}\right) d \lambda d\|K(z) f\|^{2} \\
& =\sum_{\nu} z_{\nu}\left\|K_{\nu} f\right\|^{2}+\int_{\Delta(N)} z d\|K(z) f\|^{2}
\end{aligned}
$$

where \sum_{ν} denotes the sum for all eigenvalues of N. In addition to it, by the definition on f, clearly $K(\delta) f$ vanishes for every subset δ of $\Delta(N)$ and there exists a unique eigenvalue $z_{\alpha} \in\left\{z_{\nu}\right\}$ such $\sum_{\nu} z_{\nu}\left\|K_{\nu} f\right\|^{2}$ $=z_{\alpha}\|f\|^{2}$.

In consequence, we have the desired relation

$$
\frac{1}{2 \pi i\|f\|^{2}} \int_{\partial D} \lambda\left((\lambda I-N)^{-1} \cdot f, f\right) d \lambda=z_{a} .
$$

