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1. Introductions. In this paper we consider a system of linear
ordinary differential equations
(1.1) edx/dt=A(t, &)z,
where x is an m-vector: A(t,¢) is a matrix of type (n,n), which
admits a uniformly asymptotic expansion

(1.2) A(t, &)= gA,(t)a

for |t|<t, as € tends to zero through a domain |arge—0|<s,.
The coefficients of this expansion, A,t) are holomorphic functions
of ¢t in the domain |¢|<{,.

The system has a turning point at the origin, if A, (f) has a set
of eigenvalues: 2,,(t),- -+, 2, (t)(p<m), which are zero for t=0, but
at least a pair of eigenvalues are not identically equal, where, by
a theorem due to Sibuya, (cf. Sibuya, Y. [3]), we may assume p=mn.

Though a general method to treat such a system is not yet
known, all the known results are obtained by reducing the coefficient
matrix A(f,¢) to a matrix, whose elements are polynomials in the
independent variable. Moreover, if there is a formal transformation

1.8) y=P(t,&)x P(t,e)~3) P,(t)e
3=0
such that
(1.4) det Py(0)3=0, P,(t): holomorphic for |t|<t,

which reduces the system (1.1) to a system with polynomial coeffi-
cients, then, in a sectorial domain, there is a matrix Q(t,e) which
has the same asymptotic expansion as P(t,¢). (cf. Sibuya, Y. [4]).
We shall call a formal transformation (1.8) with the properties (1.4),
a formal admissible transformation.
Our results are stated in two theorems:
Theorem 1. If in (1.2) At) s in the form
010---0
001---0
(1.6.1) A= ----
000---1
t00---0
then there is a formal admissible series (1.8) such that
edy/dt=A,(t)y.
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Theorem 2. If in (1.2) Ay () i3 in the form
010---0
001---0
(1.5.2) A@d)=| .-
000---1
0£0---0
then there is a formal admissible transformation (1.3) such that
edy/dt=B(¢, €)y,

where
00---0
B(t,6)=A,t)+es| 00---0
10---0
o 18 a formal power series of & with constant coefficients
(16) a~S0,E".
k=0

Remark. Those theorems can be applied when, in (1.5.1) and
(1.5.2), t is replaced by an holomorphic function ¢(¢) such that

¢(0)=0, and ¢'(0)=-0.

The system (1.1) with Ay¢) in the form (1.5.1), contains the
second order equation treated in Langer, R.E. [1], and with A(t)
in the form (1.5.2), contains the third order equation treated in
Langer, R. E. [2] in its special cases.

2. Angorithms. We shall use the following lemma.

Lemma. Let p(t, &) be a row-vector with n components, using
the matriz A(t,e) in (1.2), and define a set of row vectors p,(t,¢), k
=1,2,---,n+1, as follows
(2 1) {pl(t’ G)Iﬂ(t, 8)

’ 0.(t, &) =edp,_,/dt+p,_,(t, ) A, &) (2<Lk),

then
(2.2) D= pAT+e(bpl AT+ 1¥(A0) €138, 1, €)
where
k-1
(23) Vi(Ao) = 23((A})' A5+ AJA, AT

and f,(t, ¢, €) 18 a linear form in p, ', p’, -, y®: the coefficients of
this linear form are polynomials in A, A',-.-,A®,
Proof. By iteration
py=ep +pA
py=&"+e(21f A+ nA’)+ pA*

(24)  Pyor=pr At ekl AS 1 S ATY AT (e ) oo b,
Jj=1

Substituting the expression (1.2) into (2.4) we have the lemma.
We shall consider a transformation y=Px which carries the
system (1.1) to a system
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(2.5) edy/dt=B(t, €)y,
where P is a matrix whose row-vectors are p,, Py, - -, D,; namely
pl (t» 8)
(1
(2.6) P, o=| P29
) Da(2, €
By the expression
pz(t: B)
edyjdt=(eP'+PA)Py=| D, &) |P-'(¢, &)y
pn+l(t9 S)
B(t,¢), is necessarily of the form
010---0
001---0
2.7 B(t,e)=|000---0 |
by, by-- b,
So in order to find a matrix P(t, ¢), such that (2.5) holds for arbitrarily
given set (b, b,,---,b,), it is sufficient to find a vector g, such that
(2.8) pn+l =k§=:{ bkpk

3. Proof of Theorem 1. Set b,=t,b,=0 for k=2,3,--:,7n in
(2.8), and using the lemma,
(3.1) vAS+e(np Ayt o (Ag) +E1u(t, 1, )=t
Subtracting #A3=tx (Cayley-Hamilton theorem) and multiplying A,
from the right,

3.2) nipd + ¥ (Ag)Aotefa(t, 1, €)A,=0.

Substituting the formal expression

(3.3) lt, )~3] 10

we have an infinite sequence of systems of differential equations
(3.4.0) b= 1,G(2)

(3.4.k) t=mGt)+9.t, 1) k=0,1,2,---

where G(t)=—1/n-V¥,(4,)A, and g,(t, ) is a linear form in g, py,- - -,
!.-1 and their derivatives.

Each system has a regular singular point at the origin, and the
eigenvalues of G(0) are calculated from the equality

0 E
E__ n-k
A= <tE’,¢ 0 )

where E,_, is a unit matrix of order n—k. If we set Al(t)=(g ;‘i’)’

where @, R, S and T are matrices of type (%, k), (k, n—k),(n—k, k)
and (n—k, n—k) respectively:

At =( 5 (5 1) s, 0)=(6r o)
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We see that this matrix has diagonal elements all zero. On the

other hand
00 0 E) 0 0
B\ An—k__ kY __
(As)'4; “(Ek 0 ez, 0)=(o E)

so that G(0)=—1/n ;i (ASA, A7+ (AY AT %),., is a triangular matrix
=1

with diagonal elements,
(8.5) 0, -1/, n, -+, —2/n, -+, —(n—1)/n
and these are the eigenvalues of G(0).

Since there is 0 among the eigenvalues, and (1,0,---,0) is a
corresponding eigenvector of G(0), there is an holomorphic solution
with the initial econdition (1,0, - -, 0) of the system (8. 4. 0), moreover
this choice of the initial condition enables us to satisfy

det P,(0)=0.

If we suppose that we have found pgt), #(t),- - -, ¢-:(t), Which
are holomorphic at the origin, then we can find a solution of (8.4.k)
which is holomorphic at the origin, for g.(¢, #) is a row vector with
components holomorphic functions at the origin, and the first com-
ponent of g,(¢t, #)A, is zero at t=0. This completes the proof of
Theorem 1.

4. Proof of Theorem 2. We put b,=e¢g, b=t in (2.8) with an
undetermined formal series (1.6) and using Lemma

vtA+e(np A3+ e (A0) + 1,1, 1, ©) =eop+ety 4 ptA.
Subtracting ptA, from both sides,

41 H Ay —t) = — p(Fu(A) o —tA)+e(—fut 1S IAE).

The calculation of V,(4,) follows from the expression
[0
0
0 0 0 n—k

ay=() ")+

0 0 0
. k
- | tE, 0
0
1 E (n—k—1)
We have
0 0
k\/ -n—k—l
@y ai=(g g).
0 E 0 F 0 A}
3 n—k-1 _ n-k K+1\ __ &
At =(o a0 6)=(0 % )
where

a’k+l 1° ak+l k+1
*_
‘__ =
LN TS
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when (j, k) element of A,(0) is denoted by a,. So, at the turning
point t=0,v,.(4,) is a triangular matrix, i.e., all the elements below
the main diagonal are zero. And the diagonal elements are accord-
ingly eigenvalues of ¥ ,(4,) at the origin, they are
(a'n,h an,1+1” ) an,1+(n_1))-
The coefficient matrix on the left-hand side of (4.1) is
—t 0 +eeen n

........

0 0 ---- (n—1)t
As in the proof of Theorem 1, we substitute
u(, 6)~§ﬂj(t)e"

into (4.1) to have an infinite sequence of systems of differential equa-
tions,

(4.2.0) UH(t)=p,G(t),

(4.2.k) tH(E)=1,G1)+ ot +9.(t, u),
where

(4.3) G(t)=0,E—¥,(A4,)+tA,

and ¢, is the constant defined in (1.9); the vector g,(t, #) depends
linearly on p,---#,_, and their derivatives. Eigenvalues of G(0) are
gy—@a, —(k—1) k=1,2,---,n.
Let us define
4.4) gy=a, ;.
Then multiplying the matrix
-1 0 coo nf(n—1)t
0 1/(n—1)--- 0

0 0 -o- 1/(n—1)
from the right to (4.2.0.), we can diagonalize this system to
(4.2.0)* teh=p,G*(t).
The eigenvalues of the matrix G*(0) are
0, —1/("&—1), -0 —1,
since the (n,1) element of G(t) is identically zero.

Suppose we have obtained a sequence of holomorphic solutions
2o(@), i), « +, tty_1(t), then in order that the system (4.2.k) has an
holomorphic solution, we must determine the constant 4, so that
the first component of

attet (L, 1)
must be zero for t=0. This choice is possible. Indeed G*(0) has 0
as an eigenvalue, and (1,0,---,0) is the corresponding eigenvector.

Consequently, there is a solution such that £,(0)=(1,0,0,---,0). This
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completes the proof of Theorem 2.
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