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124. Open Basis and Continuous Mappings

By Sitiro I-IANAI
Osaka University of Liberal Arts and Education

(Comm. by K. KuNuGI, M.J.A., Nov. 13, 1961)

Let X and Y be topological spaces and let f(X)= Y be an open
continuous mapping. B. Ponomarev 6 has recently obtained the
following theorem: if X has a point-countable open base and the
inverse image f-(y) is separable for each point y of Y, then Y has
a point-countable open base. It is interesting to know under what
conditions the property of the open base of X will be preserved
under the open (or closed) continuous mapping.

In this note, we shall deal with this problem.
1. Open basis and closed mappings. At the beginning of this

section, we shall recall a definition. Let II----{U.} be a open base of
X. If 1I is star-countable (or locally countable or point-countable),
we say that 1I is a star-countable (or locally countable or point-
countable) open base.

Theorem 1. If f is a closed continuous mapping from a topo-
logical space X with a star-countable open base onto a topological
space Y such that the inverse image f-(y) is connected and countably
compact for each point y of Y, then Y has also a star-countable
open base.

Proof. Let II={U.} be a star-countable open base of X, then, by
K. Morita’s theorem [3] (or Yu. Smirnov’s lemma [83), we can see
that X is decomposed in such a way that X=[JAr, ArAr,=, ’,
7,7’e/’, and Ar={U.elI} where ltr is a countable subfamily of 1I.
Since f-(y) is connected, we have f-f(A)=Ar for each r of /’.
Since f is a closed continuous mapping, f(A) is open. And moreover
f(Ar)f(Ar,)= for 7". Since each A is perfectly separable and
f-(y) is countably compact, f-(y) is compact. Hence each f(Ar) is
perfectly separable because f is closed and continuous. Therefore Y
has a star-countable open base. This completes the proof.

Theorem 2. Let f be a closed continuous mappingfrom a topo-
logical space X with a star-countable open base onto a topological space
Y such that the point inverse image f-(y) is compact (or separable
and countably compact)for each point y of Y. Then Y has a star-
countable open base if and only if any open covering of Y has a
star-countable open refininement.

Proof. As the "only if" part is obvious, we shall prove the "if"
part. Let II={U.} be a star-countable open base of X. Since f-(y)
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is compact for each point y of Y, lI-- { U. f-(Y) U.4=, U. e 1I} is
countable and lI has a finite subcovering of f-(y). The collection
of all finite subcoverings of f-(y) is countable. Let w(k--1, 2,.--)
denote this collection and let HI--{U.I U.ew}. Then yf((HI)o)

V(y) where (H)0--{f-’(y’) f-(y’)H}. Then f-’(V(y))--(Hi)o
and ) {V(y) k- 1, 2,.-.; y e Y} is an open covering of Y because f
is a closed continuous mapping. By assumption, )has a star-counta-
ble open refinement 9t---- {R]fle B}. Then, for each R of 9t, there
exists a set HZ such that f-X(R)HL Hence
U.e lt} is countable. We denote this collection of sets by {U.,
--1,2,...} and let V2,-f-’(R)U.,(i-I, 2,...). Let |Slk--l, 2,--.}
denote all finite subfamlies of {V2,] i-- 1, 2,.-- } and let K2-{V]
V2S} and let W-f((K,)0). Then .!-- { W]k- 1, 2,.- -; fl B} is an
open covering of Y. We shall next prove that is the star-counta-
ble open base. Let y be any point of any given open set G, then
there exists a set R of 9t such that yeR. Then f-(y)cf-(G)
and f-(y)f-(l). Since lI is an open base, for any point x of
f-(y), there exists a set U. of 1I such that xe U.f-(G). Since
f-(y) is compact, there exists a set H such that f-(y)HIcf-(G).
Hence f-(y)Hf-X(R)cf-X(G). Then there exists a set W
such that y WycG. Therefore is the open base of Y. Since

is star-countable and f-(R) [J f-(W:), - is star-countable. There-

fore Y has a star-countable open base.
We shall next prove the case when f-(y) is separable and counta-

bly compact for each point y of Y. We need only prove the "if"
part. Since f-’(y) is separable, lI--[U.lU.f-(y)q, U, elI} is
countable [6, Lemma 2]. Hence, from the countable compactness of
f-(y), lI has a finite subcovering of f-(y). Then, as the remainder
of the proof can be carried out in the same way as the case when
f-(y) is compact, we omit the proof. This completes the proof.

We can prove the following theorem in the similar argument as
the proof of Theorem 2.

Theorem 3. Let f be a closed continuous mappingfrom a topo-
logical space X with a locally countable open base onto a topological
space Y such that the inverse image f-(y) is compact (or separa-
ble and countably compact)for each point y of Y. Then Y has a
locally countable open base if and only if any open covering of Y
has a locally countable open refinement.

Theorem 4. Let f be a closed continuous mapping from a
paracompact topological space X with a locally countable open base
onto a regular topological space Y such that the inverse image
is compact for each point y of Y, then Y has a locally countable
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open base.
Proof. From the proof of the theorem due to K. Morita and the

author [4, Theorem 3], we can see that Y is paracompact. Hence,
by Theorem 3, Y has a locally countable open base, completing the
proof.

Theorem 5. Let f be a closed continuous mapping from a
topological space X with a point-countable open base onto a topologi-
cal space Y such that the inverse image f-l(y) is separable and
countably compact for each point y of Y. Then Y has point-counta-
ble open base if and only if any open covering of Y has a point-
countable open refinement.

Proof. As the "only if" part if obvious, we need only prove
the "if" part. Let II-{U,} be the point-countable open base of X
and let y be any point of Y. Since f-l(y) is separable,
f-l(y)U, Uel} is countable 6, Lemna 2] and f-(y) J U

Uaay

=H. Then f-(y):(H)o:H and (H)o is an open inverse set
because f is a closed continuous mapping. Then --{f((H)o)[yeY}
is an open covering of Y. By assumption, Yp has a point-countable
open refinement }--{R fl e B}. For each Re, there exists a set
f((H)o) such that Rf((H)o). Hence f-(R)(H)oH. Let
V2--f-(R)U where Ue%, then {VY} is countable. Hence the
collection of unions of any finitely many sets of {V2} is countable.
Let w(k-1, 2,...) denote this collection and let --{f((W)o)lk--1,
2,...; eB}. Then is a point-countable open base of Y. In fact,
let G be an open set of Y and let y be any point of G, then there
exist R of 9 and (H’)0 such that f-(y)f-(R) and f-(R)(H’)o.
For each point z of f-(y), there exists U(x)el such that U.(x)
f-(G)f-(R) because lI is the open base. Since a is countable,
{U,(x)lxef-(y)} is countable. Since f-(y) is countably compact,
there exists a finite subfamily of {U(z) xe f-(y)} which covers
f-(y). Let {U,I i-- 1, 2,..., k} denote this subfamily, then f-(y)

IUf-(G)f-(R)(H’)o.= Therefore U0 is a set of

{(w)0[k-l, 2,...}. This shows that is the open base of Y. We
shall next prove that is point-countable. Let y be any point of

Y. Since {R[yR,R} is countable and f-(R)[.J(W)o, is
=1

point-countable. This completes the proof.

Remark 1. B. Ponomarev [6] has shown the following theorem:
if f is a closed continuous mapping from a T-space X with a point-
countable open base onto a T-space Y such that the inverse image
f-(y) is compact for each point y of Y, then Y has a point-
countable open base. Form his proof, we see that he has used the
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"compactness of f-(y)" in the meaning of the separability and
countable compactness of f-(y). But it seems to us that there is
a gap in his proof and we do not know whether this theorem is true
or not.

Theorem 6. If f is a closed continuous mapping from a para-
compact Hausdorff (or paracompact regular topological) space X with
a point-countable open base onto a topological space Y such that the
inverse image f-(y) is separable and countably compact for each
point y of Y, then Y has a point-countable open base.

Proof. ( ) The case when X is a paracompact Hausdorff space.
In this case, by E. Michael’s theorem [2], we can see that Y is a
paracompact Hausdorff space. Then, by Theorem 5, Y has a point-
countable open base.

( ii ) The case when X is a paracompact regular topological space.
We shall prove that f-(y) is compact for each point y of Y. Let
l-[U.] be a point-countable open base of X. Since f-(y)is separa-
ble, lt--[UIf-(y)U, Ult} is countable 6, Lemma 2J. Let
(--{G} be any open covering of f-(y), then, for each point x of
f-(y), there exist Ge( and U2elI such that xeG and
Since lt is countable and f-(y) is countably compact, f-(y) is
covered by a finite subfamily of { U. xe f- (y)}. Let { U2, i--- 1, 2,.. -,

k} denote this subfamily, then f-(y)[J U2:. Therefore f-(y) is
=1

covered by {G,[i-l, 2,...,k}. Thus we get the compactness of
f-(y). Moreover, by use of the compactness of f-(y)for each
point y of Y, it is easily seen that Y is regular. Then Y is para-
compact [4J. By Theorem 5, we get the theorem, completing the
proof.

2. Open basis and open mappings. In this section, we deal
with the open basis of the image spaces of open continuous mappings.

Theorem 7. If f is an open continuous mapping from a topo-
logical space X with a star-countable open base onto a topological
space Y such that the inverse image f-(y) is connected for each
point y of Y, then Y has a star-countable open base.

Proof. Let II--[U,} be a star-countable open base of X, then
X is decomposed in such a way that X=JAr, A.-A,-,7’,,

er

" e F, and At- [U,l/} where 1I is a countable subfamily of lt.
By the same argument of the proof of Theorem 1, we get f-f(A)
---At and f(Ar)f(Ar,)- for ’7’, ’, " e F. Then {f(U.)l U, e lI] is
a countable open base of f(Ar) which is open. Therefore Y has a
star-countable open base. This completes the proof.

Theorem 8. If f is an open continuous mappingfrom a strong-
ly paracompact topological space X onto a regular topological space
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Y such that the inverse image f-l(y) is connected for each point y
of Y, then Y is strongly paracompact.

Proof. Let (-[G.} be any open covering of Y, then
G,e(] is an open covering of X. Since X is strongly paracompact,
there exists a star-finite open covering --[R} as a refinement of
p. Then, as the proof of Theorem 1, X is decomposed in such a
way that X=UA,AA,=,r-r’,r,r’I, and

where , is a countable subfamily of 9L We get also f-*f(A,)--A,
and f(Ar)f(Ar.)- for ’@". Then, we can see that fr--{f(R)]
Rer} is a countable open covering of f(Ar) which is open. Let
: [J[r, then, it is easy to see that is a star-countable open refine-

ment of (. Since Y is a regular topological space, by Yu. Smirnov’s
theorem [8], Y is strongly paracompact. This completes the proof.

Theorem 9. If f is an open continuous mappingfrom a locally
separable metric space X onto a regular T-space Y such that the
inverse image f-l(y) is connected for each point y of Y, then Y is
a locally separable metric space.

Proof. Since X is a locally separable metric space, X is strongly
paracompact [3, 8]. Therefore, by Theorem 8, Y is strongly para-
compact. It is shown in our previous note [1_ that Y is locally
separable and locally metrizable. Hence, by Nagata-Smirnov’s theorem
[5, 7J, Y is locally separable and metrizable. This completes the
proof.

Remark 2. We can prove Theorem 9 by use of A.H. Stone’s
theorem [9_. In fact, we can see that there exists a star-fiinite
open covering {G.} of X where each G, is perfectly separable. Since
f-(y) is connected, it is easily shown that f-(y) is separable. Then,
by A.H. Stone’s theorem, Y is a locally separable metric space.

Theorem 10. If f is an open continuous mapping from a
topological space X with a locally countable open base onto a topo-
logical space Y such that the inverse image f-(y) is separable for
each pint y of Y, then X has a locally countable open base.

Proof. Since X has a locally countable open base, X is locally
separable. Then, since f is an open continuous mapping, Y is locally
separable. Therefore, for each point y of Y, there exists an open
set N such that yeN and N is separable. Since f-(y) is separable
for each point y of Y, f-(N) is separable [9, Lemma 2]. Let
--[U.} be a locally countable open base of X, hen {U.I f-(N) U,
4=, U.ll} is countable [6, Lemma 2J. On the other hand, S-{f(U.)[
U.elI} is the open base and Nf(U.) if.and only if f-(N)U.
4=. Therefore is a locally countable open base of Y. This com-
pletes the proof.
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Remark 3. As it is easily shown that a topological space X has
a star-countable open base if and only if X has a locally countable
open base, we can see that the assumptions imposed on f-l(y) in
Theorems 7 and 10 can be replaced by the separability and the con-
nectivity respectively.
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