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1. In the theory of the Fourier exponential transform on the real
number field R the following four properties play important roles.
Namely,

a) the Fourier exponential transform

E-e()-,. o()- e-’ o(t)at

is linear mapping from onto itself where is the space of all
functions of class C whose derivatives are all rapidly decreasing,

b) E(o,,) o.E,

d) N.Eo()=N.(
where and belong to , . is the convultion of and , and
Z is the set of all integers.

Some years ago we have pointed out that the properties b) and
d) characterize the Fourier exponential transform (2]). In this
paper we shall deal with another characterization. We denote (x-ba)
with (z) as a function of z.

Now the main result is as follows:
Theorem. If there exists a linear mapping T from 3 into the

space of C" functions on a Riemannian manifold satisfying the
conditions:

I) when a function series , .,... in 3 converges to 0 by L-topology, the series T, T.,.,... converges to 0 by L*-topology,
II) to any point of and any open set U containing . there

exists a function in 3 such that the support of T is contained
in U and T() is different from 0 and

II) to the same function T() grad T() differs from T()
grad T() with some real number a (here a may depend on o),

III) T(,@) Tq. Tk,

fl Tp de=fl dx,

then there is a C bijection r from to R such that
Te(.)= Ev(e).

Moreover if we assume an additional hypothesis
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V) there is a discrete subset of *Jt to which 3,eT(u) is abso-
lutely convergent and is equal to .ez(n) for any in 3, then

r(3)=z.
2. At first we shall prove several lemmas under the hypotheses

I, II, II, III and IV. We denote T() with (a) for in , a in
R and in t if T(()=0. T()

Lemma 1. (a) is independent of the choice of and

(a+b)=(a)(b).
Proof. Let and T()= 0. We have (,)=,=,

and T(,)()=T()T() 0 by the hypothesis III. Then
T(9,) Tg=-T Tg.
T(9,) Tg-T Tg-T

Because ]9-- 9(X)L*<e if a is small enough Tg()0 for small a
by the Hypothesis I.

And the equation Tg+o()= T(a)o() Tga() has a meaning. Or
Te( ) Te( )

(a+ b) =(a)(b) for sufficiently small a.
Now we can easily prove this equation for arbitrary a and b. Q.E.D.

Corollary 1. For every a (a)= 0 and Tg() 0 if Tg() O.
Corollary 2. (a) is continuous with respect to .
Lemma 2. (a)= 1

for every a in R and in .
Proof. By Hypothesis IV and lemma 1

f T a] d --f dx--f dx--f T [2 d -fl (a)]2[ T 2 d$.

If 0()[1 for o in then [(a)1 for any point in some
neighbourhood U of o by the corollary 2 of Lemma 1. According
to Hypothesis II there is a function T in T different from 0 whose
carrier is contained in U. For uch T

f[ (a)]] T()d)f[ f()[d.

Thus we have arrived at a condition.
Corollary. For any in there exists a real number r() such

that (a) exp (--2ir($)a).
Lemma 3. If we assume Hypothesis V, besides I, II, II, III and

IV, then T()=E(r()) for any n 3 and r() is an integer.
Moreover r() is a bijection from 3 to Z.
Proof. By the hypotheses III, V and Lemma 1

dx
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----.]eT() exp (2uir()x) dx

+8Tv() E@(r())
for any 9 in and @ in with compact support. If we choose as
T9 such a function that T()0 and T(’)=0 for the other
elements in 3 than we get T()T@()--T?()E@(r()). Therefore
T@()--E@(r()) for any , in 3 and @ in with compact support
i.e. the element of . Since is dense in with L*-topology we have
proved
(1) T()--E(r()) for any is .
By Hypothesis V and Lemma 2 we get

e3T=() .ez=(n) ez?(n)--euT()=exp(--2=ir()m) T(,) for mZ.
By the same choice of T as in the proof of (1) we have exp
(--2=ir()m)--1 for all integers m. This means that r() is an integer.

Substituting (1) in V

Again choosing E in the similar manner we can prove that r()
is a bijection.

Lemma 4. r() is of class C as a function of .
Proof. By the definition and previous lemmas

exp (--2ir())- T()
TV( )

and T(), T() are of class C with respect to $. Q.E.D.

J-T. T@d=f.dx__ for any and in .Lemma 5.

(Evident.)
Lemma 6.

where
Proof.

f , dx

Thus we get

T-T

By the Hypotheses IV and III

--fl T(fp,) d-f T I1 T d

f (x--u)@(u)(x--t) @(t)dudtdx
RXRXR
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If TT is not real at 0 there exists a neighbourhood U of $o where
(T()T()) has the same sign as (T(p(o)T(o)) and if TT is
real on 9 and differs from T at o there is a neighbourhood U of
U of $0 where T()T()--I T($)12 has the same sign as T($o)T($o)
--[ T(p(o)12. Using T with T(o)0 whose support is contained
in U, we arrive at a contradiction. Therefore T 12- T(p. T.
Now if T()0 then Tq()--T() and if T()4:0 then
T()--T()=T.(). Finally if T()--0 clearly T()--0.

Lemma 7. There are non-negative Cfunctions on R a, a2,’"

with compact support such that to any function in , the series
,a, ,a.,... converges to pointwise and in L-topology.

(Schwartz 3 tome II, pp. 22 and 23.)

Lemma 8. fT de= (o) for in such that T has the compact

support.
Proof. By Lemmas 5, 6, and Hypothesis III

f f- f fTg. T@ d-- .dx--9.@(0)-- T.. T@ d-- T(.@) d.

If we substitute in a, a2,’’" in Lemma 7, we get as the limit

fT d--(O).

Lemma 9. For any point in we can take a local coordinates
system having r() as one of its coordinates.

Proof. By Corollary of Lemma 2, Corollaries of Lemma 1 and
Hypothesis

2ia grad r()--grad (log Tp() )Tp()
=__1 grad TPa()-1 grad Tp() 0. Q.E.D.
T($) Te($)

3. Let U be a relatively compact open set in i} in which a local
coordinate system ,...’, where --r(), is admissible. Take a
function in different from 0 such that the support of Tp is
contained in U. Now, we apply Lemma 8 to p(x):

p(a)--(0) f Tpd--f exp (-- 2ia) dS.

By Lemma 9 we get, with positive function g(8),

(a)-- f’exp (-2ia’)(f T. g()d 2. dS,)
for any real number a. And by the inversion theorem of Fourier
transform (Bochner and Chandrasekharan [1] p. 10)

f T.() .-.de E().
r()=x
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Because T(,...p,,-..,)---(To)’(T) has the same support as

P q

T we get also f(T(p)’(T---)g() d...d" (E(x))’(Eo(x))q;

here U is the set of all points in U where =r()--x.
Now we shall prove that T()] is equal to E(x)[ or 0 in U.

If at some point

E(x) =f T+ [ d’> 0 (d’=g() d... d")then
Ux

and T() > E(x) (1
in some neighbourhood V of

l=f T [2 d,+l E(x) ]2P>(1+g)2P volume (V)Therefore
U

for every natural number p. But it is impossible and

then 1-

So it must be T()--0 or [E(x) in U.
But U is connected and therefore

T($)[-Ee() in .
If and 2 are different points in U we can take as , by

Hypothesis II,, such a function that T()0 and the support of
T is contained in U but does not contain 2. On the other hand
by the above result we have ]T(,)]--T(2)[.
This contradiction shows that U consists of a single point and
is one-dimensional, moreover r:r() is a locally bijective mapping.
In other words with a suitable orientation r() is monotonically
increasing at every point , therefore r is a one to one mapping
from into R.

Now wo have

fexp (- ixa) E(x)dx-(a)

=__f fexp 2=
u u

:=_fexp (-2= ixa) Te(r- ’())g()d.

here d=()d or -(). Therefore T(-())():(). If we
]y hi ormul o *...* we hve
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for m-- 1, 2, 3,..- From this g(z)-- 1 in r() and T,()----E(r($))
for any function in with a small compact support.

Let T(p(0) differ from 0 and be any function in . The
support of T(.) is contained in the support of T and we can
conclude T(.,)(o) E(p,)(r(o)) or T(o)T(o)--Ep(r(o))E(r(o)).
So we get T(o)--E(r(o)).

Thus, with Lemma 3, we have completed the proof of the
theorem.

4. We investigate the case _R. By the previous result g(x)
1 we have dr()-d.

Proposition. /f 9t--R then
r()=+c

with a constant c. Under Hypothesis V c is an integer.
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