140. Some Characterizations of Fourier Transforms. II

By Koziro Iwasaki
Musashi Institute of Technology, Tokyo
(Comm. by Z. Suetuna, m.J.A., Dec. 12, 1961)

1. In the theory of the Fourier exponential transform on the real number field \boldsymbol{R} the following four properties play important roles. Namely,
a) the Fourier exponential transform

$$
E: \varphi(x) \rightarrow E \varphi(x)=\int_{-\infty}^{\infty} e^{2 x i x t} \varphi(t) d t
$$

is a linear mapping from \mathfrak{F} onto itself where \mathfrak{P} is the space of all functions of class C^{∞} whose derivatives are all rapidly decreasing,
b) $E(\varphi * \psi)=E \varphi \cdot E \psi$,
c) $\int_{\boldsymbol{R}}|E \varphi|^{2} d x=\int_{\boldsymbol{R}}|\varphi|^{2} d x$,
d) $\sum_{n \in \boldsymbol{Z}} E \varphi(n)=\sum_{n \in \boldsymbol{Z}} \varphi(n)$
where φ and ψ belong to $\mathfrak{P}, \varphi * \psi$ is the convultion of φ and ψ, and \boldsymbol{Z} is the set of all integers.

Some years ago we have pointed out that the properties b) and d) characterize the Fourier exponential transform ([2]). In this paper we shall deal with another characterization. We denote $\varphi(x+a)$ with $\varphi_{a}(x)$ as a function of x.

Now the main result is as follows:
Theorem. If there exists a linear mapping T from \mathfrak{P} into the space of C^{∞} functions on a Riemannian manifold \Re satisfying the conditions:
I) when a function series $\varphi_{1}, \varphi_{2}, \cdots$ in \mathfrak{F} converges to 0 by L^{1} topology, the series $T \varphi_{1}, T \varphi_{2}, \cdots$ converges to 0 by L^{∞}-topology,
II_{1}) to any point ξ of \Re and any open set U containing $\frac{1}{}$ there exists a function φ in \mathfrak{P} such that the support of $T \varphi$ is contained in U and $T \varphi(\xi)$ is different from 0 and
II_{2}) to the same function $\varphi \quad T \varphi_{a}(\xi) \operatorname{grad} T \varphi(\xi)$ differs from $T \varphi(\xi)$ $\operatorname{grad} T \varphi_{a}(\xi)$ with some real number a (here a may depend on φ),

$$
T(\varphi * \psi)=T \varphi \cdot T \psi
$$

IV)

$$
\int_{R}|T \varphi|^{2} d \xi=\int_{R}|\varphi|^{2} d x,
$$

then there is a C^{∞} bijection r from $\mathfrak{\Re}$ to \boldsymbol{R} such that

$$
T \varphi(\hat{\xi})=E \varphi(r \xi) .
$$

Moreover if we assume an additional hypothesis
V) there is a discrete subset 3 of $\mathfrak{\Re}$ to which $\sum_{\nu \in 3} T \varphi(\nu)$ is absolutely convergent and is equal to $\sum_{n \in \mathcal{Z}} \varphi(n)$ for any φ in \mathfrak{F}, then

$$
r(3)=Z .
$$

2. At first we shall prove several lemmas under the hypotheses I, $\mathrm{II}_{1}, \mathrm{II}_{2}$, III and IV. We denote $\frac{T \varphi_{a}(\xi)}{T \varphi(\xi)}$ with $\xi(a)$ for φ in \mathfrak{P}, a in \boldsymbol{R} and ξ in \Re if $T \varphi((\xi) \neq 0$.

Lemma 1. $\xi(a)$ is independent of the choice of φ and

$$
\xi(a+b)=\xi(a) \xi(b) .
$$

Proof. Let $\psi \in \mathfrak{P}$ and $T \psi(\xi) \neq 0$. We have $(\varphi * \psi)_{a}=\varphi_{a} * \psi=\varphi * \psi_{a}$ and $T(\varphi * \psi)(\xi)=T \varphi(\xi) T \psi(\xi) \neq 0$ by the hypothesis III. Then

$$
\frac{T(\varphi * \psi)_{a}}{T(\varphi * \psi)}=\frac{T \varphi_{a} \cdot T \psi}{T \varphi \cdot T \psi}=\frac{T \varphi \cdot T \psi_{a}}{T \varphi \cdot T \psi} .
$$

Because $\left\|\varphi_{a}-\varphi(x)\right\|_{L^{1}}<\varepsilon$ if a is small enough $T \varphi_{a}(\xi) \neq 0$ for small a by the Hypothesis I.
And the equation $\frac{T \varphi_{a+b}(\xi)}{T \varphi(\xi)}=\frac{T\left(\varphi_{a}\right)_{b}(\xi)}{T \varphi_{a}(\xi)} \cdot \frac{T \varphi_{a}(\xi)}{T \varphi(\xi)}$ has a meaning. Or $\xi(a+b)=\xi(a) \xi(b)$ for sufficiently small a.
Now we can easily prove this equation for arbitrary a and b. Q.E.D.
Corollary 1. For every a $\xi(a) \neq 0$ and $T \varphi_{a}(\xi) \neq 0$ if $T \varphi(\xi) \neq 0$.
Corollary 2. $\xi(a)$ is continuous with respect to ξ.
Lemma 2.

$$
|\xi(a)|=1
$$

for every a in \boldsymbol{R} and ξ in \Re.
Proof. By Hypothesis IV and lemma 1

$$
\int_{\Re}\left|T \varphi_{a}\right|^{2} d \xi=\int_{\boldsymbol{R}}\left|\varphi_{a}\right|^{2} d x=\int_{\boldsymbol{Z}}|\varphi|^{2} d x=\int_{\Re}|T \varphi|^{2} d \xi=\int_{\Re}|\xi(a)|^{2}|T \varphi|^{2} d \xi
$$

If $\left|\xi_{0}(a)\right|>1$ for ξ_{0} in \Re then $|\xi(a)|>1$ for any point ξ in some neighbourhood U of ξ_{0} by the corollary 2 of Lemma 1. According to Hypothesis II_{1} there is a function $T \varphi$ in $T \mathfrak{F}$ different from 0 whose carrier is contained in U. For such $T \varphi$

$$
\int_{\Re}|\xi(a)|^{2}|T \varphi(\xi)|^{2} d \xi>\int_{\Re}|T \varphi(\xi)|^{2} d \xi .
$$

Thus we have arrived at a condition.
Corollary. For any ξ in \Re there exists a real number $r(\xi)$ such that

$$
\xi(a)=\exp (-2 \pi i r(\xi) a) .
$$

Lemma 3. If we assume Hypothesis V , besides $\mathrm{I}, \mathrm{I}_{1}, \mathrm{II}_{2}$, III and IV, then $T \varphi(\nu)=E \varphi(r(\nu))$ for any ν in 3 and $r(\nu)$ is an integer.

Moreover $\nu \rightarrow r(\nu)$ is a bijection from 3 to \boldsymbol{Z}.
Proof. By the hypotheses III, V and Lemma 1

$$
\begin{aligned}
& \sum_{\nu \in 3} T(\varphi * \psi)(\nu)=\sum_{\nu \in 3} T \varphi(\nu) \cdot T \psi(\nu) \\
= & \sum_{n \in Z} \varphi * \psi(n)=\sum_{n \in Z} \int_{\boldsymbol{R}} \varphi(n-x) \psi(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbf{R}} \sum_{n \in Z} \varphi_{-x}(n) \psi(x) d x=\int_{\boldsymbol{R}} \sum_{\nu \in 3} T \varphi_{-x}(\nu) \psi(x) d x \\
& =\int_{\boldsymbol{R}} \sum_{\llcorner\in 3} T \varphi(\nu) \exp (2 \pi i r(\nu) x) \psi(x) d x \\
& =\sum_{\nu \in 3} T \varphi(\nu) E \psi(r(\nu))
\end{aligned}
$$

for any φ in \mathfrak{P} and ψ in \mathfrak{F} with compact support. If we choose as $T \varphi$ such a function that $T \varphi(\nu) \neq 0$ and $T \varphi\left(\nu^{\prime}\right)=0$ for the other elements in 3 than ν we get $T \varphi(\nu) T \psi(\nu)=T \varphi(\nu) E \psi(r(\nu))$. Therefore $T \psi(\nu)=E \psi(r(\nu))$ for any ν in 3 and ψ in \mathfrak{P} with compact support i.e. the element of \mathfrak{D}. Since \mathfrak{D} is dense in \mathfrak{P} with L^{1}-topology we have proved
(1)

$$
T \psi(\nu)=E \psi(r(\nu)) \text { for any } \psi \text { is } \mathfrak{\beta}
$$

By Hypothesis V and Lemma 2 we get

$$
\begin{aligned}
\sum_{\nu \in 3} T \varphi_{m}(\nu) & =\sum_{n \in Z} \varphi_{m}(n)=\sum_{n \in Z} \varphi(n)=\sum_{\nu \in 3} T \varphi(\nu) \\
& =\sum_{\nu \ni 3} \exp (-2 \pi i r(\nu) m) T \varphi(\nu) \text { for } m \in Z .
\end{aligned}
$$

By the same choice of $T \varphi$ as in the proof of (1) we have exp $(-2 \pi i r(\nu) m)=1$ for all integers m. This means that $r(\nu)$ is an integer.

Substituting (1) in V

$$
\sum_{\in 3} E \varphi(r(\nu))=\sum_{n \in \boldsymbol{Z}} \varphi(n)=\sum_{n \in \mathbf{Z}} E \varphi(n) .
$$

Again choosing $E \varphi$ in the similar manner we can prove that $\nu \rightarrow r(\nu)$ is a bijection.

Lemma 4. $r(\xi)$ is of class C^{∞} as a function of ξ.
Proof. By the definition and previous lemmas

$$
\exp (-2 \pi i r(\xi))=\frac{T \varphi_{1}(\xi)}{T \varphi(\xi)}
$$

and $T \varphi(\xi), T \varphi_{1}(\xi)$ are of class C^{∞} with respect to ξ. Q.E.D.
Lemma 5. $\int_{\Re} T \varphi \cdot \overline{T \psi} d \xi=\int_{\Re} \varphi \cdot \bar{\psi} d x$ for any φ and ψ in \mathfrak{F}.
(Evident.)

Lemma 6.

$$
\begin{gathered}
\overline{T \varphi}=T \hat{\varphi} \\
\hat{\varphi}(x)=\overline{\varphi(-x)} .
\end{gathered}
$$

where
Proof. By the Hypotheses IV and III

$$
\begin{aligned}
\int_{\boldsymbol{R}}|\varphi * \psi|^{2} d x & =\int_{\Re t}|T(\varphi * \psi)|^{2} d \xi=\int_{\Re}|T \varphi|^{2}|T \psi|^{2} d \xi \\
& =\int_{\boldsymbol{R} \times \boldsymbol{R} \times \boldsymbol{R}} \varphi(x-u) \psi(u) \overline{\varphi(x-t)} \overline{\psi(t)} d u d t d x \\
& =\int_{\boldsymbol{R} \times \boldsymbol{R}} \varphi * \hat{\varphi}(t-u) \psi(u) \overline{\psi(t)} d u d t=\int_{\boldsymbol{R}} \varphi * \widehat{\varphi} * \psi(t) \overline{\psi(t)} d t \\
& \left.=\int_{\Re} T(\varphi * \hat{\varphi} * \psi) \overline{T \psi} d \xi \quad \text { (Lemma } 5\right)=\int_{\Re} T \varphi T \hat{\varphi}|T \psi|^{2} d \xi .
\end{aligned}
$$

Thus we get

$$
\int_{\mathscr{}}|T \varphi|^{2}|T \psi|^{2} d \xi=\int_{\Re} T \varphi T \hat{\varphi}|T \psi|^{2} d \xi
$$

If $T \varphi T \hat{\varphi}$ is not real at ξ_{0} there exists a neighbourhood U of ξ_{0} where $\mathfrak{J}(T \varphi(\xi) T \hat{\varphi}(\xi))$ has the same sign as $\mathcal{F}\left(T \varphi\left(\xi_{0}\right) T \hat{\varphi}\left(\xi_{0}\right)\right)$ and if $T \varphi T \hat{\varphi}$ is real on \Re and differs from $|T \varphi|^{2}$ at ξ_{0} there is a neighbourhood U of U of ξ_{0} where $T \varphi(\xi) T \hat{\varphi}(\xi)-|T \varphi(\xi)|^{2}$ has the same sign as $T \varphi\left(\xi_{0}\right) T \hat{\varphi}\left(\xi_{0}\right)$ $-\left|T \varphi\left(\xi_{0}\right)\right|^{2}$. Using $T \psi$ with $T \psi\left(\xi_{0}\right) \neq 0$ whose support is contained in U, we arrive at a contradiction. Therefore $|T \varphi|^{2}=T \varphi \cdot T \hat{\varphi}$.
Now if $T \varphi(\xi) \neq 0$ then $\overline{T \varphi(\xi)}=T \hat{\varphi}(\xi)$ and if $T \hat{\varphi}(\xi) \neq 0$ then $T \hat{\varphi}(\xi)=T \widehat{\varphi}(\xi)=T \varphi(\xi)$. Finally if $T \varphi(\xi)=0$ clearly $T \hat{\varphi}(\xi)=0$.

Lemma 7. There are non-negative C^{∞} functions on $\boldsymbol{R} \alpha_{1}, \alpha_{2}, \cdots$ with compact support such that to any function φ in \mathfrak{P}, the series $\varphi * \alpha_{1}, \varphi * \alpha_{2}, \cdots$ converges to φ pointwise and in L^{1}-topology.
(Schwartz [3] tome II, pp. 22 and 23.)
Lemma 8. $\int_{\Downarrow t} T \varphi d \xi=\varphi(0)$ for φ in \mathfrak{P} such that $T \varphi$ has the compact support.

Proof. By Lemmas 5, 6, and Hypothesis III

$$
\int_{\Re} T \varphi \cdot \overline{T \psi} d \xi=\int_{\boldsymbol{R}} \varphi \cdot \bar{\psi} d x=\varphi * \hat{\psi}(0)=\int_{\Re} T \varphi \cdot T \hat{\psi} d \xi=\int_{\Re} T(\varphi * \hat{\psi}) d \xi .
$$

If we substitute in $\hat{\psi} \alpha_{1}, \alpha_{2}, \cdots$ in Lemma 7 , we get as the limit

$$
\int_{\Re} T \varphi d \xi=\psi(0)
$$

Lemma 9. For any point ξ in \Re we can take a local coordinates system having $r(\xi)$ as one of its coordinates.

Proof. By Corollary of Lemma 2, Corollaries of Lemma 1 and Hypothesis II_{2}

$$
\begin{aligned}
& 2 \pi i a \operatorname{grad} r(\xi)=\operatorname{grad}\left(\log \frac{T \varphi_{a}(\xi)}{T \varphi(\xi)}\right) \\
& =\frac{1}{T \varphi_{a}(\xi)} \operatorname{grad} T \varphi_{a}(\xi)-\frac{1}{T \varphi(\xi)} \operatorname{grad} T \varphi(\xi) \neq 0 . \quad \text { Q.E.D. }
\end{aligned}
$$

3. Let U be a relatively compact open set in \Re in which a local coordinate system $\xi^{1}, \cdots \xi^{n}$, where $\xi^{1}=r(\xi)$, is admissible. Take a function φ in \mathfrak{P} different from 0 such that the support of $T \varphi$ is contained in U. Now, we apply Lemma 8 to $\varphi_{i}(x)$:

$$
\varphi(a)=\varphi_{a}(0)=\int_{\Re} T \varphi_{a} d \xi=\int_{U} \exp \left(-2 \pi i a \xi^{1}\right) T \varphi(\xi) d \xi .
$$

By Lemma 9 we get, with positive function $g(\xi)$,

$$
\varphi(a)=\int_{-\infty}^{\infty} \exp \left(-2 \pi i a \xi^{1}\right)\left(\int_{U \mid \xi \mathfrak{1}} T \varphi \cdot g(\xi) d \xi^{2} \cdots d \xi^{n}\right) d \xi^{1}
$$

for any real number a. And by the inversion theorem of Fourier transform (Bochner and Chandrasekharan [1] p. 10)

$$
\int_{r(\xi)=x} T \varphi \cdot g(\xi) d \xi^{2} \cdots d \xi^{n}=E \varphi(x) .
$$

Because $T(\underbrace{\varphi * \cdots \varphi}_{p} * \widehat{\varphi}_{\boldsymbol{\varphi}}^{* \cdots *})=(T \varphi)^{p}(\overline{T \varphi})^{q}$ has the same support as $T \varphi$ we get also $\int_{U_{x}}\left(T(\varphi)^{r}(\overline{T \varphi})^{q} g(\xi) d \xi^{2} \cdots d \xi^{n}=(E \varphi(x))^{p}(\overline{E \varphi(x)})^{q}\right.$; here U_{x} is the set of all points ξ in U where $\xi^{1}=r(\xi)=x$.

Now we shall prove that $|T \varphi(\xi)|$ is equal to $|E \varphi(x)|$ or 0 in U_{x}. If at some point ξ_{0} in $U_{x}\left|T \varphi\left(\xi_{0}\right)\right|>|E \varphi(x)|$
then

$$
|E \varphi(x)|^{2}=\int_{U_{x}}|T \varphi|^{2} d \xi^{\prime}>0\left(d \xi^{\prime}=g(\xi) d \xi^{2} \cdots d \xi^{n}\right)
$$

and

$$
|T \varphi(\xi)|>|E \varphi(x)|(1+\varepsilon)
$$

in some neighbourhood V of ξ_{0} in U_{x} with some positive number ε. Therefore $1=\int_{U_{x}}|T \varphi|^{2 p} d \xi^{\prime} \div|E \varphi(x)|^{2 p}>(1+\varepsilon)^{2 p}$ volume (V) for every natural number p. But it is impossible and $\left|T \varphi(\xi) \leqq|E \varphi(x)|\right.$ in U_{x}.
If

$$
0<\left|T \varphi\left(\xi_{0}\right)\right|<|E \varphi(x)|
$$

then

$$
1=\frac{\int_{U_{x}}|T \varphi|^{2(p+1)} d \xi^{\prime}}{|E \varphi(x)|^{2(p+1)}}<\frac{\int_{U_{x}}|T \varphi|^{2 p} d \xi^{\prime}}{|E \varphi(x)|^{2 p}}=1 .
$$

So it must be $|T \varphi(\xi)|=0$ or $|E \varphi(x)|$ in U_{x}. But U_{x} is connected and therefore

$$
|T \varphi(\xi)|=|E \varphi(x)| \quad \text { in } U_{x} .
$$

If ξ_{1} and ξ_{2} are different points in U_{x} we can take as φ, by Hypothesis II_{1}, such a function that $T \varphi\left(\xi_{1}\right) \neq 0$ and the support of $T \varphi$ is contained in U but does not contain ξ_{2}. On the other hand by the above result we have $\left|T \varphi\left(\xi_{1}\right)\right|=\left|T \varphi\left(\xi_{2}\right)\right|$.
This contradiction shows that U_{x} consists of a single point and \mathfrak{R} is one-dimensional, moreover $r: \xi \rightarrow r(\xi)$ is a locally bijective mapping. In other words with a suitable orientation $r(\xi)$ is monotonically increasing at every point ξ, therefore r is a one to one mapping from $\mathfrak{\Re}$ into \boldsymbol{R}.

Now wo have

$$
\begin{aligned}
& \int_{\boldsymbol{R}} \exp (-2 \pi i x a) E \varphi(x) d x=\varphi(a) \\
& \quad=\int_{V} T \varphi_{a}(\xi) d \xi=\int_{V} \exp (-2 \pi i r(\xi) a) T \varphi(\xi) d \xi \\
& \quad=\int_{r(U)} \exp (-2 \pi i x a) T \varphi\left(r^{-1}(x)\right) g(x) d x
\end{aligned}
$$

here $d \xi=g(x) d x$ for $x=r(\xi)$. Therefore $T \varphi\left(r^{-1}(x)\right) g(x)=E \varphi(x)$. If we apply this formula to $\varphi^{*} \ldots{ }^{*} \varphi$ we have

$$
\left(T \varphi\left(r^{-1}(x)\right)\right)^{m} g(x)=(E \varphi(x))^{m}
$$

for $m=1,2,3, \cdots$. From this $g(x)=1$ in $r(\Re)$ and $T \varphi(\xi)=E \varphi(r(\xi))$ for any function in $\mathfrak{\beta}$ with a small compact support.

Let $T \varphi\left(\xi_{0}\right)$ differ from 0 and ψ be any function in \mathfrak{P}. The support of $T(\varphi * \psi)$ is contained in the support of $T \varphi$ and we can conclude $T(\varphi * \psi)\left(\xi_{0}\right)=E(\varphi * \psi)\left(r\left(\xi_{0}\right)\right)$ or $T \varphi\left(\xi_{0}\right) T \psi\left(\xi_{0}\right)=E \varphi\left(r\left(\xi_{0}\right)\right) E \psi\left(r\left(\xi_{0}\right)\right)$. So we get $T \psi\left(\xi_{0}\right)=E \psi\left(r\left(\xi_{0}\right)\right)$.

Thus, with Lemma 3, we have completed the proof of the theorem.
 $=1$ we have $d r(\xi)=d \xi$.

Proposition. If $\mathfrak{\Re}=\boldsymbol{R}$ then
$r(\xi)=\xi+c$
with a constant c. Under Hypothesis V c is an integer.

References

[1] S. Bochner and Chandrasekharan: Fourier Transform, Ann. Math. Studies, 19, Princeton (1949).
[2] K. Iwasaki: Some characterizations of Fourier transforms, Proc. Japan. Acad., 35, no. 8, 423-426 (1959).
[3] L. Schwartz: Théorie des Distribution, Herman, Paris (1950).

