2. Existence of Pseudo-Analytic Differentials on Riemann Surfaces. II

By Akira SAKAI

(Comm. by Kinjirô Kunugi, M.J.A., Jan. 12, 1963)

III. Existence theorems. 1. Definition 3.1. Let γ be an analytic closed curve on R, and ω be a real differential of C. The integral

$$\int_{x} \frac{1}{\sqrt{\sigma}} \omega$$

is called the σ -period of ω over γ , and denoted by $P_{\sigma}(\omega; \gamma)$. A differential ω is called σ -exact if all its σ -periods vanish.

The σ -exact differential can be written as Du for $u \in C^1$.

Theorem 3.1. Let γ be an analytic closed curve which does not devide R, then there exists a differential $\omega \in H$ such that $P_{\sigma}(\omega; \gamma) = 1$ and σ -exact in $R - \gamma$.

Proof. We can construct a closed differential $\eta \in C^2 \cap L^2$ which is σ -exact in $R-\gamma$ and $P_{\sigma}(\eta;\gamma)=1$. Set $\eta_1=\sqrt{\sigma}\,\eta$, then $D_1\eta_1=0$. Therefore we have $\eta_1=\omega_h+\omega_1$ with $\omega_h\in H$, and $\omega_1\in E$. Since $\eta_1\in C_1$, we have $\omega_1\in C^1$ and therefore $\omega_1=Du$ with $u\in C^2$. In $R-\gamma$, we have $\omega=\eta_1-Du$, and hence ω is σ -exact there. Moreover we have

$$\int_{r} \frac{1}{\sqrt{\sigma}} \omega = \int_{r} \frac{1}{\sqrt{\sigma}} (\eta_{1} - Du) = \int_{r} (\eta - du) = \int_{r} \eta = 1.$$

2. Let F(p) and G(p) be the functions of $C^{1+\alpha}$ satisfying (3.2) $-i\overline{F}G>0$ and $M \ge |F| + |G| \ge M^{-1} > 0$.

An (F,G)-pseudo-analytic function is an [a,b]-analytic function with

(3.3)
$$a = -\frac{\overline{F}G_z - F_z\overline{G}}{F\overline{G} - \overline{F}G}, \quad b = \frac{FG_z - F_z\overline{G}}{F\overline{G} - \overline{F}G},$$

and an (F,G)-pseudo-analytic differential is an [a,b]-analytic differential with

(3.4)
$$a = -\frac{\overline{F}G_{\bar{z}} - F_{\bar{z}}\overline{G}}{F\overline{G} - \overline{F}G}, \quad b = -\frac{FG_{z} - F_{z}G}{F\overline{G} - \overline{F}G}.$$

Under the condition (3.2), (F, G)-analytic function of the 2nd kind $\chi(p) = u(p) + iv(p)$ satisfy the equation

$$\begin{cases} v_x = -\sigma u_y \\ v_y = \sigma u_x \end{cases} \quad \sigma = i \frac{F}{G} > 0.$$

Since $\sigma \in C^{1+\alpha}$, u(p) is in C^2 , and hence u is σ -harmonic.

3. We fix the point $p_0 \in R$, a neighborhood V of p_0 , and its local parameter z. Let $W_0(z)$ be the (F, G)-analytic function similar to the function $1/z^n$ $(n \ge 1)$ in V. Let $\chi_0(z) = u_0 + iv_0$ be the (F, G)-analytic

8 A. Sakai [Vol. 39,

function of the 2nd kind corresponding to $W_0(z)$. Then $\omega_0 = Du_0 = \sqrt{\sigma} du_0$ is a σ -harmonic differential in V. We shall prove

Theorem 3.2. There exists a unique differential ω having the following properties:

- (1) ω is σ -harmonic in $R-p_0$, and σ -exact in $R-p_0$.
- (2) In a neighborhood V_1 of p_0 , $\omega \sqrt{\sigma} du_0$ is σ -harmonic.
- (3) Let $h(p) \in C^2 \cap L^2$ such that $h(p) \equiv 0$ in V_1 , then $(\omega, Dh) = 0$.
- $(4) \|\omega\|_{R-V_1} < \infty.$

Proof. Let V_1 and V_2 be the neighborhoods such that $V_1 \subseteq V_2 \subseteq V$. We define the real function $\rho(z) \in C^3(V)$ such that $\rho(z) \equiv 1$ in V_1 , and $\rho(z) \equiv 0$ in $V - V_2$. We set

We have $\eta = \sqrt{\sigma} \, du_0 + \frac{1}{\sqrt{\sigma}} * dv_0 = \sqrt{\sigma} \, du_0 - \sqrt{\sigma} \, du_0 = 0$ in V_1 , and $\eta \equiv 0$ in $R - V_2$. Hence $\eta \in L^2 \cap C^{1+a}$. From Theorem 2.3, we have $\eta = \omega_h + Du + \frac{1}{\sigma} * Dv$ with $\omega_h \in H$, $u, v \in C^2$, $Du \in \widetilde{E}$ and $\frac{1}{\sigma} * Dv \in E^*$. We set

(3.8)
$$\omega = \eta_1 - Du = -\eta_2 + \omega_n + \frac{1}{\sigma} *Dv.$$

We shall prove that ω satisfies the conditions (1)—(4). Proof of (1): $\omega \in C^1(R-p_0)$ and we have $D_1\omega = D_1\eta_1 - D_1Du = d\left(\frac{1}{\sqrt{\sigma}}\sqrt{\sigma}\,d(\rho u_0)\right) - d\left(\frac{1}{\sqrt{\sigma}}\sqrt{\sigma}\,d(\rho u_0)\right) - d\left(\frac{1}{\sqrt{\sigma}}\sqrt{\sigma}\,d(\rho u_0)\right) - d\left(\frac{1}{\sqrt{\sigma}}\sqrt{\sigma}\,d(\rho u_0)\right) - d\left(\frac{1}{\sqrt{\sigma}}\sqrt{\sigma}\,d(\rho u_0)\right) + D_2*\omega_h - D_2\left(\frac{1}{\sigma}Dv\right) = 0.$ Hence ω is σ -harmonic in $R-p_0$. Since $\omega = \eta - Du$, ω is σ -exact in $R-p_0$. Proof of (2): Since $\eta_1 = -\eta_2 = \sqrt{\sigma}\,du_0$ in V_1 , we have $D_1(\omega - \sqrt{\sigma}\,du_0) = -D_1Du = 0$ and $D_2*(\omega - \sqrt{\sigma}\,du_0) = D_2*\omega_h - D_2\left(\frac{1}{\sigma}Dv\right) = 0$, hence $\omega - \sqrt{\sigma}\,du_0$ is σ -harmonic in V_1 . Proof of (3): Since $h \in \widetilde{E}$, and $\omega_h \in \widetilde{H}$, we have $(\omega, Dh) = (-\eta_2, Dh) + (\omega_h, D_h) + \left(\frac{1}{\sigma}*Dv, Dh\right) = 0$. Proof of (4): Since $\|\eta_1\|_{R-V_1} < \infty$ and $\|Du\|_R < \infty$, we have $\|\omega\|_{R-V_1} = \|\eta_1 - Du\|_{R-V_1} \le \|\eta_1\|_{R-V_1} + \|Du\|_R < \infty$.

Finally, we shall prove the uniqueness. Let ω' be another differential which has the properties (1)—(4). Then $\omega'-\omega$ is in L^2 , it is σ -harmonic on R and σ -exact. There is a function $u(p) \in C^2$ such that $\omega'-\omega=Du$. Consider the function h(p) such that $h=\rho u$ in V and $h\equiv 0$ in R-V. Then h-u has the properties of (3). Hence we have $(\omega'-\omega,D(h-u))=0$. Since $\omega'-\omega\in\widetilde{H}$ and $Dh\in\widetilde{E}$, we have $||\omega'-\omega||^2=0$

$$(\omega'-\omega, Du)=(\omega'-\omega, D(u-h))+(\omega'-\omega, Dh)=0.$$

Theorem 3.3. There exists a unique differential $\varphi = fdz$ such that

- (1) φ is (F, G)-analytic in $R-p_0$, and corresponding (F, G)-analytic function of the 2nd kind has the single-valued real part in $R-p_0$.
- (2) φ is similar to the analytic differential $d(1/z^n)$ $(n \ge 1)$ in V.
- (3) $||\varphi||_{R-V} < \infty$.

Proof. Let ω be the differential obtained in the previous theorem. Since ω is σ -exact in $R-p_0$: $\omega=\sqrt{\sigma}\,du$ with σ -harmonic u, we can find a function v(z) such that $dv=\sigma*du$ in every neighborhood V of $R-p_0$. Hence, $d\chi=du+i\sigma*du$ is the differential of an (F,G)-analytic function of the 2nd kind $\chi(z)$ in V. Therefore, the differential $\varphi=F\frac{1}{\sqrt{\sigma}}\omega+G\sqrt{\sigma}*\omega=Fdu+Gdv$ is an (F,G)-analytic differential of $R-p_0$. From the way of construction of ω , we know that φ has a singularity similar to $d(1/z^n)$ at p_0 . Finally, we have $||\varphi||_{E-V_1}<\infty$.

4. In the next place, we fix the points p_0 , q_0 in a neighborhood V. Let $w_0 = Fu_0 + Gv_0$ be the (F, G)-analytic function similar to the function $\log(z-A)/(z-B)$ in V, A and B being the values of z corresponding to p_0 and q_0 respectively. The slight modification of the proof of Theorem 3.2 and Theorem 3.3 gives the following

Theorem 3.4. There exists a unique differential ω which has the following properties:

- (1) $\omega \sqrt{\sigma} du_0$ is σ -harmonic in V, and ω has the same σ -periods as $\sqrt{\sigma} du_0$ in V.
- (2) ω is σ -harmonic in $R-(p_0 \cup q_0)$ and is σ -exact in R-V.
- (3) $\|\omega\|_{R-V} < \infty$.
- (4) If $h \in C^2 \cap L^2$ and $h \equiv 0$ in V, then $(\omega, Dh) = 0$. Theorem 3.5. There exists a differential $\varphi = fdz$ such that
- (1) φ is (F,G)-analytic in $R-(p_0 \cup q_0)$, and corresponding (F,G)-analytic function of the second kind $\chi(p)$ has the single-valued real part in R-V.
- (2) $\varphi (Fdu_0 + Gdv_0)$ is (F, G)-analytic in V.

Theorem 3.6. For every analytic closed curve γ which does not divide R, there exists an (F,G)-analytic differential which has non zero (F,G)-period on γ and is everywhere regular.

This is the immediate consequence of Theorem 3.1.

References

- [1] Bers, L.: Theory of pseudo-analytic functions, Lecture Note, New York Univ. (1953).
- [2] —: Partial differential equations and pseudo-analytic functions on Riemann surfaces, Annals of Mathematics Studies, No. 30, 157-165, Princeton (1953).
- [3] Friedrichs, K. O.: On differential operators in Hilbert spaces, Amer. J. Math., 61, 523-544 (1939).