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III. Existence theorems. 1. Definition 3.1. Let be an analytic
closed curve on R, and o be a real differential of C. The integral

i ealleg the -period of
tia is called -exact if all its -periods vanish.

The a-exact differential can be written as Du for u eC.
Theorem 3.1. Let be an analytic closed curve which does not

deride R, then there exists a differential wH such that P,(w; )=1
and a-exact in R--

Pro@ We can construct a closed differential vCL which
is a-exact in R--r and P(v:r)=l. Set =JV, then D=0.
Therefore we have V=o+o with oeH, and weE. Since .eC,
we have weC and therefore o=Du with uC. In R--r, we have
w=v--Du, and hence is a-exact there. Moreover we have

f f f f
2. Let F(p) and G(p) be the functions of C+ satisfying

(3.2) --iFG>O and M I1 + lal
An (F, G)-pseudo-analytie function is an [a, b3-analytie function with

(S.S) a-- Fa--Fa =Fa--a
FG--FG FG--FG

and an (F, G)-pseudo-analytie differential is an [a, b-analytie differen-
tial with

(3.4) a-- F--a b-- Fa--Fa
FG--FG FG--FG

Under the condition (3.2), (F, G)-analytie function of the 2nd kind
(p)=u(p)+iv(p) satisfy the equation

(3.5) [v-- --z% Fz-i >0.

Sinee z sC+, u(p) is in C, and hence u is z-harmonic.
3. We fix the point posR, neighborhood V o Po, and its local

parameter z. Let Wo(Z) be the (F, G)-analytie unetion similar to
the function 1/z (nl) in V. Let o(z)=uo+iVo be the (F, G)-analytie
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function of the 2nd kind corresponding to Wo(z). Then Oo=Duo=/a duo
is a a-harmonic differential in V. We shall prove

Theorem 3.2. There exists a unique differential o having the
following properties:
(1) ro is a-harmonic in R--po, and a-exact in R--po.
(2) In a neighborhood V of Po, o--/-5-duo is a-harmonic.
(3) Let h(p)eCL such that h(p)-O in V, then (w, Dh)--0.
(4)

Proof. Let V and V be the neighborhoods such that GGV.
We define the real function p(z)sCs(V) such that p(z)l in V, and
p(z)=0 in V--V2. We set

{D(uo) in V {---1a .D(pvo)in V
h-- in R V, 0 in R--V,

(3.6)
and
(8.7)

1 ,dVo=/-dUo--/-6-duo--O in V, and 0We have V--(duo+

in R--V. Hence vzLC+. From Theorem 2.8, we have V=w

+ Du+ ,Dv with wH, u, vzC, Duz and ,Dvz*. We set

(8.8) ----Ou----++f ,Dv.

We shall prove that w satisfies the conditions (1)--(4). Proof of (1):

weC(R--po) and we have Dw--D--DDu--d Jd(puo) --d

du)--O and D,----D,w+D,--D(hDv)-d(d(vo))
+D,w--Dz(Dv)--O. Hence w is a-harmonic in R--po. Since

w=--Du, w is a-exact in R--po. Proof of (2): Since =--=du0
in V, we have D(w--4duo)=--DDu=O and D,(w---duo)=D,

w--D(-Dv)--O, hence w--duo is a-harmonic in V. Proof of

(3)" Since hE, and weH, we have (o, Dh)--(--,Dh)+(w,D)

+(,Dv, Dh)=O. Proof of (4): Since [[[[_r,< and  lDull < ,

we have
Finally, we shall prove the uniqueness. Let ’ be another differ-

ential which has the properties (1)--(4). Then w’--w is in L, it is
a-harmonic on R and a-exact. There is a function u(p)eC such that
w’--w=Du. Consider the function h(p) such that h=pu in V and
h0 in R--V. Then h--u has the properties of (3). Hence we have

(w’--w,D(h--u))=O. Since w’--wH and DhE, we have
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(w’--w, Du)=(w’--w, D(u--h))+(w’--oo, Dh) =0.
Theorem 3.3. There exists a unique differential =fdz such that

1 is (F, G)-analytic in R--pc, and corresponding (F, G)-analytic
function of the 2nd kind has the single-valued real part in
R--pc.

(2) is similar to the analytic differential d(1/z") (n=>l) in V.
3 )

Proof. Let o be the differential obtained in the previous theorem.
Since w is a-exact in R--pc: w----5-du with a-harmonic u, we can find
a function v(z) such that dv=a.du in every neighborhood V of R--pc.
Hence, dz=du+ia.du is the differential of an (F, G)-analytic function

-F___1of the 2nd kind Z(z) in V. Therefore, the differential

+G/-.o=Fdu+Gdv is an (F, G)-analytic differential of R--pc. From
the way of construction of w, we know that ( has a singularity
similar to d(1/z

4. In the next place, we fix the points P0, q0 in a neighborhood
V. Let wo=Fuo+Gvo be the (F, G)-analytic function similar to the
function log (z--A)/(z--B) in V, A and B being the values of z cor-
responding to P0 and qo respectively. The slight modification of the
proof of Theorem 3.2 and Theorem 3.3 gives the following

Theorem 3.4. There exists a unique differential o which has
the following properties:
(1) w--/-duo is a-harmonic in V, and o has the same a-periods

as /-Jduo in V.
(2) o is a-harmonic in R--(po[Jqo) and is a-exact in R--V.
(3)
(4) IF and in 17, (co,

Theorem 3.5. There exists a differential =fdz such that
(1) is (F,G)-analytic in R--(po[Jqo), and corresponding (F, G)-

analytic function of the second kind Z(P) has the single-valued
real part in R--V.

(2) --(Fduo+Gdvo) is (F, G)-analytic in V.
Theorem 3.6. For every analytic closed curve which does not

divide R, there exists an (F, G)-analytic differential which has non
zero (F, G)-period on and is everywhere regular.

This is the immediate consequence of Theorem 3.1.
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