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15. A Note on Absolute Convergence of Fourier Series

By Kenji YANO
Department of Mathematics, Nara Women’s University
(Comm. by Zyoiti SUETUNA, M.J.A., Feb. 12, 1963)

1. Theorems. Let f(x) be integrable in Lebesgue sense in (0,
2r), periodic with period 2z, and let
f(x)~ﬁ(an cos nx+b, sin nx),
n=1
a, being, as we may, supposed to be zero. Then, its allied series is

(=]
Si(a, sin ne—>b, cos nx).

n=1

At x=0, these series become

éan and é(_bn)
n=1 n=1
respectively.
In what follows, for the sake of convenience, S will be some-
n=1
times denoted by >.
It is well known that f is bounded in (0, 2z), and a,=0 for all
n, then Sla, <. Cf.Paley [1]. But, the proposition b,=0 for all
n does not necessarily imply >1b,< o, unless some additional condi-
tion will be assumed concerning the function conjugate to f.

In this paper, we shall prove the following theorems.
THEOREM 1. If feL, and

BN 140 = [T +A—tat

is bounded for 0 <k <=, then the proposition a,=0 for all », or more
generally

gﬂ(la’nl _an)<°°
implies
Sila] <.

This theorem is eclearly trivial when f is odd.
In the case a,=0, this theorem is due to Széasz [2, p. 697].
THEOREM 2, If feL, and

= _ 1 [ f)—=A—1)
(12) 50)= T 2 tan (¢/2) d

is bounded for 0<h <=, then
implies
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This theorem is trivial when f is even.
COROLLARY 1. Let by w(d) denote the modulus of continuity of
S in (0, 2x), i.e.
w(8)=w(3; f; 0, 2r) =sup| flz+h) —f(2)|,
where sup is taken for all &, |h| =4, and for all x and x4+ belong-

ing to (0,2z), and let A(x) be any function such that A(n)>0 for
n=n, and

= 1
1.3 =
(1.3) n=no NA(M) *
Under these circumstances, if
& o(l/n)
(1.4) 'n=2m n](n) <00’
and
_ o(l/n) £ <
(1.5) a,> YT ) or n=mn,,

then we have
Sla,| <o

In this corollary, we may particularly take as i(x), e.g. 1/log «,
1, log z, log x log log %, ete. In the case i(x)=1/log x, this corollary
is due to Tomié [8].

COROLLARY 2. If w(0)=w(s;f; 0, 2x),
(1.6) > el o,

and
a,>— __‘”(l/n), bn>—-aM, for n>1
n n =

then the Fourier series of f converges absolutely everywhere.

(N.B.1) We notice that the single condition (1.6) implies the
uniform convergence in (0,2z) of the Fourier series of f and its
allied series, since (1.6) implies w(1/n)=0(1/log ») by Lemma 4 below,
and the continuity in (0, 2z) of the function conjugate to f.

2. Proofs of Theorems. We need some lemmas. It is known
that if there exists the limit of f,(0) for A—~+0, then la, is sum-
mable A to this limit, see Zygmund [4, p. 101 (7.9)], and that if there
exists the limit of f,(0) for A—-0, then S}(—b,) is summable A4 to
this limit, see also loc. cit. [4, p. 104]. And indeed in both cases
the summability A may be, as it is easily shown, replaced by the
summability (C,2). Quite analogously, one obtains the following two
lemmas.

LEmMA 1. If feL, and f,(0) defined in (1.1) is bounded,for 0<h
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<, then 3la, is bounded in Abel sense.
LEMMA 2. If feL, and f,(0) defined in (1.2) is bounded for 0<h
<=, then >1b, is bounded in Abel sense.

Let us denote by K, in the sequel, an absolute positive constant
which may not be the same in different occurrences.
LEmMMA 3. If the real series > u, is bounded in Abel sense, i.e.

(2.1) Iilu,,'r”l <K
holds for every value of » such that 0<r<1, and if

then we have
Sua| <co.
PROOF. From (2.2) one obtains, for 0<r<1,
S (Jua| —u)r"<K
which together with (2.1) yields
i]unl'r"<2K,
and then "~
"ﬁ_ll U, | r"<2K

for every positive integer N. Making r—>1—0 and then N>, we
have successively

N
Su,| 22K,
n=1

ua| <2K,
n=1
which is the required.

LEMMA 4, Let v, decrease to zero with 1/n, and i(x) be any
function such that i(n)>0 for n=n, and

23) DU SEYG v W
a=no NA(N)

as N—>co, Then

2.4 Y

(24) n=no NA(N)

implies

v,=o(1/u(n)) as m—>oo,
In particular, letting a(z)=1,
S1% < oo
n=1 N
implies
v,=0(l/log n) as n—>oo,
and letting A(x)=log z,
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VU

< oo
=21 logn

implies
v,=0(1/log log n) as m—>oco.

(N.B.2) If we put xi(x)=1 in the lemma, then we have the
classical result that if v, 0 and >}v,< > then v,=o(l/n) as n—>oo,

PROOF. From (2.4), we see that for any positive ¢ there exists
an integer m such that
(2.5) LV, <X

) remnA(n) 2
holds for every N=m. And, by (2.8) we can choose N, so large
that for the above fixed m
Y1 1

(2.6) = 0 > 5 HN)
holds for all N=N,. On the other hand, since w(1/n) decreases with
1/n, it holds

Un > % _}_
i=mnid(n) ” immni(n)

Hence, for every number N satisfying (2.6) one obtains
£ >y 2ud), ie. o< L
which proves the lemma.

We now prove the théorems.

Theorem 1 follows immediately from Lemmas 1 and 8, and
Theorem 2 does from Lemmas 2 and 3.

PrROOF OF COROLLARY 1. By Lemma 4, (1.4) together with (1.3)
yields w(1/n)—>0 for n—co, which a fortiori implies the existence of
the finite limit of f,(0) for A—4-0, and clearly (1.5) together with (1.4)
yields >(|a,| —a,)<e. So, the corollary follows from Theorem 1.

PROOF OF COROLLARY 2. >|a,|<co is a result from Corollary
1 with a(x)=1. Next, observing that >n 'ew(l/n)< is equivalent

to f t-tw(t)dt < o which implies the existence of the finite limit of

0
F2(0) for h—-+0, )|b,| <o is a result from Theorem 2. Thus, we get
the corollary.
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