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(Comm. by Zyoiti SUETUNA, M.J.A., Feb. 12, 1963)

1. Theorems. Let f(x) be integrable in Lebesgue sense in (0,
2), periodic with period 2=, and let

f(x) (an cos nx+ bn sin

a0 being, as we may, supposed to be zero. Then, its allied series is

(an sin nx--bn cos nx).

At --0, these series become

]an and :](--
=1 =1

respectively.

In what follows, for the sake of convenience, , will be some-

times denoted by .
It is well known that f is bounded in (0, 2z), and a_0 for all

n, then ,a oo. Cf. Paley 1. But, the proposition b__>0 for all
n does not necessarily imply boo, unless some additional condi-
tion will be assumed concerning the function conjugate to f.

In this paper, we shall prove the following theorems.
THEOREM 1. If feL, and

(1.1) f(O) - [f(t)+f(--t)dt

is bounded for 0<h<z, then the proposition a>=0 for all n, or more
generally

implies

This theorem is clearly trivial when f is odd.
In the case a>__0, this theorem is due to Szsz [_2, p. 697.
THEOREM 2. If feL, and

f" f(t)--f(--t) dt
z 2tan(t/2)

is bounded for 0 h , then

implies
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This theorem is trivial when f is even.
COROLLARY 1. Let by w() denote the modulus of continuity of

f in (0, 2=), i.e.
w() =o(3;f; O, 2)--supl f(x+ h)--f(x)l,

where sup is taken for all h, h 1<3, and for all x and x+h belong-
ing to (0,2), and let 2(x) be any function such that 2(n)O for
n_>_ no, and

(1.3)
=,.o n(n)

Under these circumstances, if

<
and

(1.5) a. > o(1/n) for n>= no,
n,(n)

then we have

In this corollary, we may particularly take as (z), e.g. 1/log x,
1, log , log z log log x, etc. In the case ,(x)=l/log x, this corollary
is due to Tomi6 [8].

COROLLARY 2. If o() =o(;f; 0, 2),

(1.6) , w(1/n) < ,
and

as> w(1/n), b> ---w(1/n), for n>=l,
n n

then the Fourier series of f converges absolutely everywhere.
(N. B. 1) We notice that the single condition (1.6) implies the

uniform convergence in (0, 2=) of the Fourier series of f and its
allied series, since (1.6) implies w(1/n)=o(1/log n)by Lemma 4 below,
and the continuity in (0, 2) of the function conjugate to f.

2. Proofs of Theorems. We need some lemmas. It is known
that if there exists the limit of f(0) for h-+0, then a= is sum-
mable A to this limit, see Zygmund [4, p. 101 (7.9)], and that if there
exists the limit of f,(0) for h->+0, then (--b) is summable A to
this limit, see also loc. cit. [4, p. 104]. And indeed in both cases
the summability A may be, as it is easily shown, replaced by the
summability (C, 2). Quite analogously, one obtains the following two
lemmas.

LEMMA 1. If feL, and f(0) defined in (1.1) is boundedlfor 0<h
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< , then a. is bounded in Abel sense.

LEMMA 2. If fL, and f(0) defined in (1.2) is bounded for 0<h
<z, then b is bounded in Abel sense.

Let us denote by K, in the sequel, an absolute positive constant
which may not be the same in different occurrences.

LEMMA 3. If the real series u. is bounded in Abel sense, i.e.

(2.) ur <K
holds for every value of r such that 0rl, and if

(2.2) (u[--u)<,
then we have

lul<.
P00F. From (2.2) one obtains, for 0<r<l,

which together with (2.1) yields

lul<2K,
and then

lulr<2K
for every positive integer N. Making 1--0 and then N, we
have successively

lul2K,

IuIS2K,
which is the required.

LEMM 4. Let v decrease to zero with lln, and () be any
function such that (n)>0 for nno, and

1(2.) --z(N)

as N->. Then

(2.4)

implies
v=o(/z(n)) as

In particular, letting 2(x)---- 1,

=1 T

implies
v--o(1/log n) as n-->,

and letting 2()---log ,
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.=5 n logn
implies

v,--o(1/log log n) as
(N.B. 2) If we put ()--1 in the lemma, then we have the

classical result that if v 0 and v< then v--o(1/n) as n.
Po0F. From (2.4), we see that for any positive e there exists

an integer m such that

holds for every Nm. And, by (2.3) we can choose N so large
that for the above fixed m

1 1(2.6) = n(n) >
holds for all NN. On the other hand, since w(1/n)decreases with
1/n, it holds

Vn 1
n(n)

>v
n(n)

Hence, for every number N satisfying (2.6) one obtains
z >v 1 i.e.

2’’ (Y)
which proves the lemma.

We now prove the theorems.
Theorem 1 follows immediately from Lemmas 1 and 3, and

Theorem 2 does from Lemmas 2 and 3.
PROOF OF COROLLARY 1. By Lemma 4, (1.4) together with (1.3)

yields w(1/n)0 for n, which a fortiori implies the existence of
the finite limit of f(0) for h+0, and clearly (1.5) together with (1.4)
yields (]a --a)< . So, the corollary follows from Theorem 1.

PROOF OF COROLLARY 2. [an[ < is a result from Corollary
1 with (x)--l. Next, observing that n-%(1/n)< is equivalent

to which implies the existence of the finite limit of

f(0) for h+0, [b]< is a result from Theorem 2. Thus, we get
the corollary.
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