96. Note on Orientable Surfaces in 4-Space

By Reibun TAKASE Waseda University (Comm. by Kinjirô KUNUGI, M.J.A., Sept. 12, 1963)

In the preceding paper [1], the Stiefel-Whitney number w is defined for a closed (orientable) oriented surface M embedded in an (orientable) oriented 4-manifold W without boundary. In the note we will prove the following;

Theorem. The Stiefel-Whitney number w is the self-intersection number of the fundamental homology class of M in W [2].

In consequence, the Stiefel-Whitney number w of M in W is an invariance under the iso-neighboring relation, and in particular if W is euclidean 4-space R, then w=0, because the 2-dimensional homology group of R vanishes.

Proof of Theorem. Using the notation of the paper [1], the longitudes b_j $(j \neq 0)$ may be chosen so that $\sum_{j \neq 0} b_j$ is on T_0 , and b_j is the intersection of \widetilde{F}_j and T_j , where \widetilde{F}_j is an oriented surface in 3-sphere $\partial \Box_j$ with boundary $\partial \nabla_j$. Let $F_j(j \neq 0)$ be $Cl(\widetilde{F}_j - U_j)$ with the orientation satisfying $\partial F_j = b_j$. Let F_0 be an oriented surface in $\partial \Box_0$ with boundary $\sum_{j \neq 0} b_j$. Then the intersection number $KI(F_0, \partial \nabla_0)$ is equal to the looping coefficient $LC(\sum_{j \neq 0} b_j, \partial \nabla_0)$ by the definitions of intersection number and looping coefficient. Since $\sum_{j \neq 0} b_j$ is homologous to $wa_0 - b_0$ on T_0 , $LC(\sum_{j \neq 0} b_j, \partial \nabla_0) = LC(wa_0 - b_0, \partial \nabla_0) = wLC(a_0, \partial \nabla_0) - LC(b_0, \partial \nabla_0)$ in $\partial \Box_0$. Since $LC(a_0, \partial \nabla_0) = 1$ and $LC(b_0, \partial \nabla_0) = 0$ in $\partial \Box_0$, $KI(F_0, \partial \nabla_0) = w$. Since $F_0 \cap M = \partial \nabla_0$, M and $\partial \nabla_0$ meet F_0 at the same number of points, so by the definition of intersection number $KI(F_0, M) = KI(F_0, \partial \nabla_0) = w$. For each j, F_j is homologous to $\sum_j \nabla_j (=M)$ in W. Since $F_j \cap M$ is empty $(j \neq 0)$, $KI(\sum_j F_j, M) = KI(F_0, M) = w$, completing the proof.

References

- H. Noguchi: A classification of orientable surfaces in 4-space, Proc. Japan Acad., 39, 422-423 (1963).
- [2] We owe the formulation to J. Milnor.