140. Semigroups Whose Arbitrary Subsets Containing a Definite Element are Subsemigroups

By Morio Sasaki

Department of Mathematics, Iwate University (Comm. by Kenjiro SHODA, M.J.A., Nov. 12, 1963)

1. Consider a semigroup S satisfying the following condition: Any subset of S which contains a definite element e is a subsemigroup of S.

A semigroup S is called a β^* -semigroup if S satisfies the above condition.

For example semigroups of order 2, β -semigroups [4]¹⁾ and Rédei's semigroups are all β^* -semigroups, where by a Rédei's semigroup we mean a semigroup satisfying the condition that any non-empty subset is a subsemigroup [2].²⁾

2. Immediately we have that a homomorphic image of S is a β^* -semigroup and any subset of S which contains e is also a β^* -semigroup.

Putting now $T = \{x \in S; x^2 = x\}$, $U = \{x \in S; x^2 = e, x \neq e, ex = xe = e\}$, and $V = \{x \in S; x^2 = e, x \neq e, ex = xe = x\}$, it follows that V has at most one element and S = T + U + V (disjoint class-sum).

We define a relation \approx as follows:

 $a \approx b$ means that at least one of $a \sim b$, $a \sim b$ and $a \sim b$ holds, provided that $a \sim b [a \sim b]$ means ab=a and ba=b [ab=b and ba=a] for a, b in

T, $a \sim b$ does ab = ba = e for a, b in $S \setminus T^{,3}$

Then we have the following lemmas.

Lemma 1. \approx is an equivalence relation defined in S.

Lemma 2. For any a, b in U, any c in T and w in V

 $a \approx b$, $w \neq a$ (\neq denotes the negation of \approx), $w \neq c$ and $a \neq c$.

Lemma 3. If $V \neq \Box$,⁴⁾ then $e \approx a$ implies e = a.

Thus we have

Theorem 1. S can be represented as

$$S = \sum_{\alpha \in \mathcal{A}} S_{\alpha} = \sum_{\lambda \in \mathcal{A}_{L}} S_{\lambda} + \sum_{\mu \in \mathcal{A}_{r}} S_{\mu} + \sum_{\nu \in \mathcal{A}_{0}} S_{\nu} \text{ (disjoint class-sum)}$$

where $\Lambda = \Delta_i \smile \Delta_r \smile \Delta_0$, $\Delta_0 = \{\omega, \varepsilon, v\}$,

 $S_{\lambda}, \lambda \in \mathcal{A}_{\iota} [S_{\mu}, \mu \in \mathcal{A}_{r}]$ is a maximal left [right] zero⁵ subsemigroup which contains no e,

5) A left [right] zero is a semigroup defined by xy = x[xy = y] for all x, y.

¹⁾ The numbers in brackets refer to the references at the end of the paper.

²⁾ See Theorem 50 in [2].

³⁾ $S \setminus T$ means the set of all elements belonging to S but not to T.

⁴⁾ \square denotes the empty set.

 S_* is a maximal left or right zero subsemigroup which contains e and especially $S_* = \{e\}$ when $S_* \neq \Box$,

$$S_{\omega} = \Box$$
 or $\{w\}$,
 $S_{\omega} = U$.

3. Next, we define an ordering $a \ge b$ meaning $a \ge b$, or $a \ge b$, or $a \ge b$, defined as follows:

 $a \ge b$ means either a = b or ab = ba = a,

 $a \geq b [a \geq b]$ does ab=a and ba=e [ab=e and ba=a] for $a \neq e$, $b \neq e$, $a \neq b$.

It is easily shown that

Lemma 4. \geq is a partial ordering defined in S.

Lemma 5. For $w \in S_{\omega}$, $u \in S_{\nu}$, and e

$$w \ge x \ge e \ge y \ge u$$
 implies $x = e$ and $y = e$.

Define $a \gtrless b$ meaning that ab = ba = e for $a \ne e$, $b \ne e$, $a \ne b$, and a + b

(+ denotes the negation of \sim). Then we have

Lemma 6. Let $a \ge b$. Then

(i) e > a (> denotes that \geq and \neq) and e > b,

(ii) if there exists $c \ (\leq e)$ such that c > a and c > b, then c = e. Lemma 7. Let $b \approx c$, $b \neq c$, and $a \approx b$. Then

- (i) a > b implies a > c,
- (ii) $a \gtrsim b [a \gtrsim b]$ implies $a \gtrsim c [a \gtrsim c]$,
- (iii) $a \gtrless b$ implies $a \gtrless c$ if b + c,

$$a \ge c^{6}$$
 if $b \sim c$

Lemma 8. Let $b \atop{i} c [b \atop{r} c]$, $b \neq c$, and $a \neq b$. Then $b \geq a [b \geq a]$ does not occur and

(i) b > a implies c > a or $c \ge a [c \ge a]$ if $e \approx b$, c > a if $e \approx b$,

(ii) $b \ge a [b \ge a]$ implies $e \approx b$ and c > a or $c \ge a [c \ge a]$.

Lemma 9. Let $b \sim c$, $b \neq c$ and $a \neq b$. Then

 $b \ge a$ implies $a \ge c$.

Let $\overline{S} = \{S_{\alpha}\}_{\alpha \in \mathcal{A}}$ and define \geq and \gtrless in \overline{S} as follows: $S_{\alpha} \geq S_{\beta}$ means $S_{\alpha} = S_{\beta}$ or x > y for every $x \in S_{\alpha}$ and every $y \in S_{\beta}$, $S_{\alpha} \gtrless S_{\beta}$ does $x \gtrless y$ for every $x \in S_{\alpha}$ and every $y \in S_{\beta}$. By $S_{\alpha} > S_{\beta}$ we denotes that $S_{\alpha} \geq S_{\beta}$ and $S_{\alpha} \neq S_{\beta}$.

And, we define \geq (> or =) and \gtrless in Λ as follows:

 $\alpha > \beta$ means $S_{\alpha} > S_{\beta}$, $\alpha = \beta$ does $S_{\alpha} = S_{\beta}$ and $\alpha \gtrless \beta$ does $S_{\alpha} \gtrless S_{\beta}$.

Then it is easily shown that \overline{S} is order isomorphic onto Λ under a mapping $S_a \rightarrow \alpha$. And we have

Theorem 2. Λ is a partially ordered set with respect to \geq which contains a definite element ε and has the following properties:

629

⁶⁾ \gtrless denotes the negation of \gtrsim .

(i) If $\omega \in \Lambda$, then for any $\alpha \in \Lambda$ one and only one of $\alpha > \varepsilon$, $\alpha = \varepsilon$ and $\varepsilon > \alpha$ holds.

(ii) $\alpha > \varepsilon$ implies $\alpha > v$ and $\alpha > v$ implies $\alpha \ge \varepsilon$.

(iii) For any $\alpha(\neq \varepsilon, \neq v)$, $\beta(\neq \varepsilon, \neq v)$ in Λ one and only one of $\alpha > \beta$, $\alpha = \beta$, $\beta > \alpha$ and $\alpha \gtrless \beta$ holds.

(iv) Unless $\alpha \geqq \varepsilon$ and $\beta \geqq \varepsilon$, then one and only one of $\alpha > \beta$, $\alpha = \beta$ and $\beta > \alpha$ holds.

(v) If there exists $\gamma(\geqq \varepsilon)$ in Λ such that $\gamma \geqq \alpha$ and $\gamma \geqq \beta$, then one and only one of $\alpha > \beta$, $\alpha = \beta$ and $\beta > \alpha$ holds.

4. Put $\overline{S}_{\epsilon}(\alpha) = \{y \in S_{\epsilon}; y \ge x\}, S_{\epsilon}^{I}(\alpha) = \{y \in S_{\epsilon}; y \ge x\}, S_{\epsilon}^{r}(\alpha) = \{y \in S_{\epsilon}; y \ge x\}, S_{\epsilon}^{r}(\alpha) = \{z \in S_{\nu}; z \ge x\}, S_{\nu}^{I}(\alpha) = \{z \in S_{\nu}; z \ge x\}, S_{\nu}^{I}(\alpha) = \{z \in S_{\nu}; z \ge x\} \text{ and } \widetilde{S}_{\nu}(\alpha) = \{z \in S_{\nu}; z \ge x\} \text{ for a fixed element } x \text{ of } S_{\alpha}.$

Then $\overline{S}_{\epsilon}(\alpha)$, $S_{\epsilon}^{i}(\alpha)$, $S_{\epsilon}^{r}(\alpha)$ are defined for all $\alpha(\geqq \varepsilon)$ in Λ and $\overline{S}_{\epsilon}(\alpha)$, $S_{\epsilon}^{i}(\alpha)$, $S_{\epsilon}^{i}(\alpha)$ and $\widetilde{S}_{\epsilon}(\alpha)$ are done for all α in Λ such that $\alpha \geqq \varepsilon$ and $\alpha \ne v$.

And these all subsets are determined uniquely by α and are mutually disjoint.

And we have

Theorem 3. (i) $\overline{S}_{\bullet}(\alpha) \ni e$ for every $\alpha (\geqq \varepsilon)$ in Λ , and especially $\overline{S}_{\bullet}(v) = \{e\}.$

(ii) For every $\alpha(\geqq \varepsilon)$ in Λ $S_{\epsilon} = \overline{S}_{\epsilon}(\alpha) + S_{\epsilon}^{i}(\alpha)$ if S_{ϵ} is a left zero, $=\overline{S}_{\epsilon}(\alpha)+S_{\epsilon}^{r}(\alpha)$ if S_{ϵ} is a right zero and for every $\alpha(\geqq \varepsilon, \neq v)$ in Λ $S_{\nu} = \overline{S}_{\nu}(\alpha) + S_{\nu}^{i}(\alpha) + S_{\nu}^{r}(\alpha) + \widetilde{S}_{\nu}(\alpha).$ (iii) For every x in $S_{\alpha}(\alpha \geqq \varepsilon)$ it follows that $y \ge x$ for every $y \in \overline{S}_{\epsilon}(\alpha)$, $y \geq x [y \geq x]$ for every $y \in S_{*}^{i}(\alpha) [y \in S_{*}^{r}(\alpha)]$ and for every x in S_{α} ($\alpha \geqq \varepsilon, \pm v$) it follows $z \ge x$ for every $z \in \overline{S}_{\nu}(\alpha)$, $z \gtrsim_{i} x \ [z \gtrsim x] \text{ for every } z \in S_{v}^{i}(\alpha) \ [z \in S_{v}^{r}(\alpha)],$ $z \gtrless x$ for every $z \in \widetilde{S}_{\nu}(\alpha)$. (iv) For $\alpha(\not\equiv \varepsilon, \neq v)$, $\beta(\not\equiv \varepsilon, \neq v)$ it follows that if $\alpha > \beta$, then 1) $\overline{S}_{\epsilon}(\alpha) \subseteq \overline{S}_{\epsilon}(\beta),$ 2) $\overline{S}_{\nu}(\alpha) \subseteq \overline{S}_{\nu}(\beta)$,

3)
$$S_{\nu}^{i}(\alpha) \subseteq S_{\nu}(\beta) + S_{\nu}^{i}(\beta)$$
,

4)
$$S_{\nu}^{r}(\alpha) \subseteq \overline{S}_{\nu}(\beta) + S_{\nu}^{r}(\beta)$$

and if $\alpha \gtrless \beta$, then

No. 9] Semigroups Whose Arbitrary Subsets Containing *e* are Subsemigroups 631

 $\begin{array}{lll} 5) & \overline{S}_{\nu}(\alpha) \subseteq \widetilde{S}_{\nu}(\beta), & 5') & \overline{S}_{\nu}(\beta) \subseteq \widetilde{S}_{\nu}(\alpha), \\ 6) & S_{\nu}^{l}(\alpha) \subseteq \widetilde{S}_{\nu}(\beta) + S_{\nu}^{r}(\beta), & 6') & S_{\nu}^{l}(\beta) \subseteq \widetilde{S}_{\nu}(\alpha) + S_{\nu}^{r}(\alpha), \\ 7) & S_{\nu}^{r}(\alpha) \subseteq \widetilde{S}_{\nu}(\beta) + S_{\nu}^{l}(\beta), & 7') & S_{\nu}^{r}(\beta) \subseteq \widetilde{S}_{\nu}(\alpha) + S_{\nu}^{l}(\alpha). \end{array}$

5. According to Tamura $\lceil 4 \rceil$ a β -semigroup was either

(1) a zero semigroup defined by xy=e for all x, y

or (2) a semigroup which contains $w \neq e$ and which is defined by wx = xw = w if $x \neq w$:

$$xy = w^2 = e$$
 if $x \neq w$, $y \neq w$.

For convenience, we shall call (1) and (2) a β_1 -semigroup and a β_2 -semigroup respectively.

By the way, we can prove that $T=S_*+S_*$ is a semigroup, which shall be called a $\bar{\beta}_1$ -semigroup, defined by

xy=x [yx=x] for $x \in S_{*}$, $y \in T$ and x'y=e [yx'=e] for $x' \in S_{*}$; $y \in T$ if S_{*} is a left [right] zero.

Furthermore

Theorem 4. $G = \sum_{\nu \in \mathcal{A}_0} S_{\nu}$ is either

(1) a $\bar{\beta}_1$ -semigroup

or (2) a β_2 -semigroup.

We shall call G a $\overline{\beta}$ -semigroup.

Here, we note that S_{ω} , S_{*} , S_{v} of G can be written as follows: $S_{\omega} = \{x \in G; x^{2} \neq x, x^{3} = x\}, S_{*} = \{x \in G; x^{2} = x\}, \text{ and } S_{v} = \{x \in G; x^{2} \neq x, x^{3} \neq x\}, \text{ and that } e, \text{ say a definite element in } G, \text{ can be determined as}$

any fixed one element of S_{ϵ} if $S_{\epsilon}=G$,

 $x^2, x \in S_{\omega} + S_{\omega}$ if $S_{\varepsilon} \neq G$.

6. Combining the above theorems, we can establish the following theorem:

Theorem 5. In order that a semigroup S is a β^* -semigroup, it is necessary and sufficient that S is uniquely expressible as a partially ordered set $\Lambda = \varDelta_i \cup \varDelta_r \cup \varDelta_0$ satisfying Theorem 2 of maximal left zero subsemigroups S_{i} , $\lambda \in \varDelta_i$, maximal right zero subsemigroups S_{μ} , $\mu \in \varDelta_r$, and a non-empty maximal $\overline{\beta}$ -semigroup $G = \sum_{\nu \in \varDelta_0} S_{\nu}$ which has mutually disjoint and uniquely determined subsets $\overline{S}_{\iota}(\alpha)$, $S_{\iota}^{i}(\alpha)$ (or $S_{\iota}^{r}(\alpha)$), $\overline{S}_{\nu}(\alpha)$, $S_{\nu}^{i}(\alpha)$, $S_{\nu}^{r}(\alpha)$, and $\widetilde{S}_{\nu}(\alpha)$ for all $\alpha(\geqq \varepsilon, \ne \nu)$ in Λ satisfying Theorem 3. Therefore we have

Corollary 1. A β^* -semigroup S is a β -semigroup if and only if S has exactly one idempotent element.

Corollary 2. A β^* -semigroup S is a Rédei's semigroup if and only if S is a band⁷⁰ and Λ is a chain i.e. linearly ordered set.

Corollary 3. A β^* -semigroup S is a left or right zero semigroup

⁷⁾ A band means a semigroup whose every element is idempotent.

M. SASAKI

if and only if S does not contain elements which commute⁸⁾ with each other at all.

7. Suppose that there are given mutually disjoint systems $\{S_{\lambda}\}_{\lambda \in \mathcal{A}_{l}}$ of mutually disjoint left zero semigroups, $\{S_{\mu}\}_{\mu \in \mathcal{A}_{r}}$ of mutually disjoint right zero semigroups and a non-empty $\overline{\beta}$ -semigroup $G = \sum_{\nu \in \mathcal{A}_{0}} S_{\nu}$, $\mathcal{A}_{0} = \{\omega, \varepsilon, \nu\}$, and the suffix set $\Lambda = \mathcal{A}_{l} \smile \mathcal{A}_{r} \smile \mathcal{A}_{0}$ is a partially ordered set (\geq) satisfying Theorem 2 and for all $\alpha(\geqq \varepsilon, \end{Bmatrix} \nu)$ in Λ mutually disjoint subsets $\overline{S}_{*}(\alpha)$, $S_{*}^{l}(\alpha)$, (or $S_{*}^{r}(\alpha)$), $\overline{S}_{\nu}(\alpha)$, $S_{\nu}^{l}(\alpha)$, $S_{\nu}^{r}(\alpha)$ and $\widetilde{S}_{\nu}(\alpha)$ of G satisfying Theorem 3 are determined uniquely.

Then, put $S = \sum_{\alpha \in A} S_{\alpha} = \sum_{\lambda \in A_{l}} S_{\lambda} + \sum_{\mu \in A_{r}} S_{\mu} + \sum_{\nu \in A_{0}} S_{\nu}$ and define $xy, x \in S_{\alpha}$ and $y \in S_{\beta}$, as follows:

(1) The case $\alpha = \beta$. $xy = x \cdot y$ (\cdot denotes the multiplication of G) if $\alpha \in \Delta_0$, if $\alpha \in \mathcal{A}_{l}$, if $\alpha \in \mathcal{A}_r$. = y(2)The case $\alpha \neq \beta$ and a) $\alpha \notin \{\varepsilon, v\}, \beta \notin \{\varepsilon, v\}.$ if $\alpha > \beta$, xy = x = yxif $\beta > \alpha$, xy = y = yxxy = e = yx (e is the definite element of G) if $\alpha \ge \beta$. b) $\alpha = \varepsilon, \beta \neq v.$ xy = y = yxif $\beta > \varepsilon$, if $\beta \geqq \varepsilon$ and $x \in \overline{S}_{\epsilon}(\beta)$. xy = x = yxxy = x, yx = e if $\beta \geqq \varepsilon$ and $x \in S_{\epsilon}^{i}(\beta)$, xy = e, yx = xif $\beta \geqq \varepsilon$ and $x \in S^r_{\epsilon}(\beta)$. c) $\alpha = v, \beta \neq \varepsilon.$ xy = y = yxif $\beta > \varepsilon$, if $\beta \geqq \varepsilon$ and $x \in \overline{S}_{\nu}(\beta)$, xy = x = yxxy = x, yx = e if $\beta \geqq \varepsilon$ and $x \in S_{\nu}^{\iota}(\beta)$, xy=e, yx=x if $\beta \geqq \varepsilon$ and $x \in S^r_{\varepsilon}(\beta)$, if $\beta \geqq \varepsilon$ and $x \in \widetilde{S}_{\nu}(\beta)$. xy = e = yxd) $\alpha = v, \beta = \varepsilon.$ $xy = x \cdot y$.

Then we can prove that S forms a β^* -semigroup with respect to the above multiplication. Thus we have

Theorem 6. Any β^* -semigroup is constructed in the above mentioned way.

8. Let $S = \sum_{\alpha \in A} S_{\alpha}$ and $S' = \sum_{\alpha' \in A'} S'_{\alpha'}$ be two β^* -semigroups composed by the above mentioned way. And let $G = S_{\omega} + S_{*} + S_{\nu}$ and $G' = S'_{\omega'} + S'_{\epsilon'}$

632

⁸⁾ Two elements x and y are said to commute with each other if xy = yx.

633

+ S'_{ν} be the $\bar{\beta}$ -semigroups of S and S' respectively and let $\bar{S}_{*}(\alpha)$, $S^{i}_{*}(\alpha)$, $S^{r}_{*}(\alpha)$, $\bar{S}_{\nu}(\alpha)$, $S^{i}_{\nu}(\alpha)$, $S^{r}_{\nu}(\alpha)$, $\tilde{S}^{r}_{\nu}(\alpha')$, $\bar{S}'_{\nu'}(\alpha')$, $S'^{i}_{\nu'}(\alpha')$, $\bar{S}'_{\nu'}(\alpha')$, $\bar{S$

Then we have the following theorem:

Theorem 7. $S = \sum_{\alpha \in A} S_{\alpha}$ is isomorphic [anti-isomorphic] onto $S' = \sum_{\alpha' \in A'} S'_{\alpha'}$ if and only if there exist an order isomorphism φ of Λ onto Λ' , isomorphisms [anti-isomorphisms] ψ_{α} of S_{α} onto $S'_{\varphi(\alpha)}$ for all $\alpha \in \mathcal{A}_{\iota} \cup \mathcal{A}_{r}$ and an isomorphism [anti-isomorphism] ψ_{0} of G onto G' satisfying the following conditions: for all $\alpha (\geqq \varepsilon, \neq \upsilon)$ in Λ

$$\begin{split} \psi_{0}(\overline{S}_{*}(\alpha)) &= \overline{S}'_{*'}(\varphi(\alpha)), \quad \psi_{0}(S^{l}_{*}(\alpha)) = S'^{l}_{*'}(\varphi(\alpha)) \quad \left[\psi_{0}(S^{l}_{*}(\alpha)) = S'^{r}_{*'}(\varphi(\alpha))\right], \\ \psi_{0}(S^{r}_{*}(\alpha)) &= S'^{r}_{*'}(\varphi(\alpha)) \quad \left[\psi_{0}(S^{r}_{*}(\alpha)) = S'^{l}_{*'}(\varphi(\alpha))\right], \quad \psi_{0}(\overline{S}_{*}(\alpha)) = \overline{S}'^{r}_{*'}(\varphi(\alpha)), \\ \psi_{0}(S^{l}_{*}(\alpha)) &= S'^{l}_{*'}(\varphi(\alpha)) \quad \left[\psi_{0}(S^{l}_{*}(\alpha)) = S'^{r}_{*'}(\varphi(\alpha))\right], \quad \psi_{0}(S^{r}_{*}(\alpha)) = S'^{r}_{*'}(\varphi(\alpha)), \\ \left[\psi_{0}(S^{r}_{*}(\alpha)) = S'^{l}_{*'}(\varphi)\right], \quad \psi_{0}(\overline{S}_{*}(\alpha)) = \overline{S}'^{r}_{*'}(\varphi(\alpha)). \end{split}$$

References

- A. H. Clifford and G. B. Preston: The algebraic theory of semigroups, Amer. Math. Soc., Providence, R. I. (1961).
- [2] L. Rédei: Algebra I, Akadémiai Kiadó, Budapest (1954).
- [3] D. Rees: On semigroups, Proc. Cambridge Philos. Soc., 36, 387-400 (1940).
- [4] T. Tamura: On semigroups whose subsemigroup semilattice is the Boolean algebra of all subsets of a set, Jour. of Gakugei Tokushima Univ., 12, 1-3 (1961).