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1. Introduction. The concept of Bochner transforms is a gene-
ralization of Fourier transforms of radial functions. (Bochner [1
and Iwasaki [23.) In this paper we shall define Bochner transforms
attached to the space of matrices M(n, R) and investigate some of
its properties. As an analogy to the case of the one-dimensional
Euclidean space we get "n-dimensional Bessel functions". We shall
give Bessel differential equations for these functions.

Probably the Bochner transforms have a close relation to Siegel
modular functions. We shall discuss in this direction elsewhere.

2. Definitions and notations. We denote by Po-Po(n, R) the
space of non-negative symmetric matrices of degree n, by P the set
of strictly positive elements in P0 and M the space of continuous
functions on P0 which is C on P, invariant by the automorphism of

Po, x"tuxu where u e U= O(n, R), and (det x)-l(x) dx is conver-

gent. Now e

Definition. The Bochner transform T= T?, is a linear operator
on M which satisfies the following conditions (B):

(__(B) the function s(x)--exp 2___ tr x) is mapped to itself by T,

(B) f(twtuxuw)du with eM and weGL(n, R) is mapped by
U

T, as a function of x, to

fv - - \normalized(dUis the Haarby measurel on U)T(w tucut$o-)du" det w
du=
U

(B) f(det x)q(x)4(x)dx-- f(det
P P

where 9, eM and dx is a measure on P invariant by x-->twxw (see
E2).

Any element f of M is a spherical function on P, therefore it
has the Fourier transform in Gelfand-Selberg sense. On our stand
point it may be called the Mellin transform of and it is defined
as follows (Selberg 3 pp. 56-59):
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If x belongs to P it can be represented uniquely as *tt, where t
is a member of the space of upper trigonal matrices with positive
diagonal elements t,--t**. And

=(, s., ., s) f(tt)t, /’./ t+--1dt
T

H dt dtf(ttt) - t-
is the Mellin transform of (x).

By the general theory of spherical functions we know that the
ring D of invariant differential operators attached to P has the
generators A,..., such that

v(s)-(s)v(s)
where a(s) is the fundamental symmetric polynomial in s,..., s of
degree i.

3. Properties. We shall transform the conditions (B) in formulas
in s.

By (B) and (B) we have

= Idet! - (det )T()T(--)g.

Calculating the ellin tranform (strictly seaking the convolution
with the onal sgherieal funetion ,()) of the both sides as function
in w, we

(-)(.)=()(-),
where k--e means (k--,..., k--).

If we take s() in (B) as (w) and use the condition (B), the
following equality holds:

Proposition 1. T() is equal to

f
where tt- and ()-I() is the funetion whose ellin transform
is

Corollary. T belongs to M and the oeraor T is continuous
with resee to he norm
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[[[]-- (det x) (x) dx .
Proposition 2. T is the identical mapping.

Proeosifion 3. ATf() --Proof. For

2 2
Proposition 4. If (x)M is a common eigenfunction for T,

(with arbitrary k>0, then p(x) is of the form c exp
2

Proof. By Proposition 2 we have

(s) T(s) for k > O,

and by the equality (1)

must be independent of . herefore

(- c ...c ).
Proposition 5. If k0 the operator defined by the formula (1)

is a continuous linear mapping on M with respect to the norm

fIIll- det

4. Higher dimensional Bessel functions. In the case n=l

the function J),,(t) is equal to t-_ -t. As an analogy

to this case we define the Bessel function of dimension n by the
equality

for xPo. (Note that J(x)=J:(x)) Then we have

C2+2,), Cs= +... +s.)

Proposition 6. J(s)
2/ 2 /
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We have now a few formulas similar to the ordinary Bessel
functions.

Proposition 7.
v--1

a) ((detx)-SJY(x))-2(detx)--J’+(x),
v--I

b) /((det x)---J?(x))-- (--2)ndet x J’_(x).
Proof of a). The Mel]in transform of both sides are

2s...s and 2.
F(2"+2--sl)... F( 2"+2--sl ).2 2

Moreover we have the following Bessel differential equation:
Proposition 8.

(n’Jf-19n_ l- --,-z/,-,’)J= (--4)ndet x J2.
Proof.
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