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156. On Bochner Transforms. II

A Generalization Attached to M(n, R) and
““an’’ n-Dimensional Bessel Function

By Koziro IwASAKI
Musashi Institute of Technology, Tokyo
(Comm. by Zyoiti SUETUNA, M.J.A., Dec. 12, 1963)

1. Introduction. The concept of Bochner transforms is a gene-
ralization of Fourier transforms of radial functions. (Bochner [1]
and Iwasaki [2].) In this paper we shall define Bochner transforms
attached to the space of matrices M(n, R) and investigate some of
its properties. As an analogy to the case of the one-dimensional
Euclidean space we get “n-dimensional Bessel functions”. We shall
give Bessel differential equations for these functions.

Probably the Bochner transforms have a close relation to Siegel
modular functions. We shall discuss in this direction elsewhere.

2. Definitions and notations. We denote by P,=Py(n, R) the
space of non-negative symmetric matrices of degree n, by P the set
of strictly positive elements in P, and M, the space of continuous
functions on P, which is C* on P, invariant by the automorphism of

P, x—>‘uxu where ue U=0(n, R), and | (det w)glgo(x)ﬁdx is conver-
P

gent. Now
Definition. The Bochner transform T=T7, is a linear operator
on M, which satisfies the following conditions (B):

(B,) the function s(w)=exp<-— 2l—ﬂtr x) is mapped to itself by T,

(By) f o(wuzuw)du with ge M, and weGL(n, R) is mapped by
1%

T, as a function of xz, to

fTSD(w'l ‘uzwiw-)du - |det w| <du is the Haar measure on U>’
o normalized by f du=1
U

By [ (et 2)ippv()do= [(det 23 To(e) T (w)de,

where ¢, veM, and dx is a measure on P invariant by x—>‘wxw (see
[2]).

Any element ¢ of M, is a spherical function on P, therefore it
has the Fourier transform in Gelfand-Selberg sense. On our stand
point it may be called the Mellin transform of ¢ and it is defined
as follows (Selberg [8] pp. 56-59):



712 K. IwAsAKI [Vol. 89,

If « belongs to P it can be represented uniquely as ‘tt, where ¢

is a member of the space of upper trigonal matrices with positive
diagonal elements #,=t,,, And

P(8)=0(8) 83)° + +, 8,)= f p(ee)t ™. - -t ide

r
=TI [at 11 [“dtoptr) gt e
i=1 A i<.i_oc

is the Mellin transform of ¢(x).

By the general theory of spherical functions we know that the
ring D of invariant differential operators attached to P has the
generators 4,,---, 4, such that

4p(s)=0,(8)p(s)
where ¢,(s) is the fundamental symmetric polynomial in s,---,s, of
degree 1.

3. Properties. We shall transform the conditions (B) in formulas
in s.
By (B,) and (B;) we have
L4
f (det z)zo(x)Y(fwrw)dx

P &
= |det w| ¥ f (det ©)T To(@) T (w-'z'w-")dz.
P
Calculating the Mellin tranform (strictly speaking the convolution

with the zonal spherical function w,(w)) of the both sides as function
in w, we get

o(k— )y (s)= To(s) Ty(k—s),
where k—s means (k—s,,---, k—s,).
If we take e(x) in (B,) as Y(x) and use the condition (B,), the
following equality holds:
p(ﬁ) .. r(in.)
2 2

r(5g)- (%)

Proposition 1. Ty(x) is equal to
k&
[Ictutyptudet vyrdy
P
where ‘tt=x and J(x)=J7,(x) is the function whose Mellin transform
. r(&)..r(%)
2 2
I—y< k—81> . ‘1—1< k—Sn)
2 2

Corollary. T¢ belongs to M, and the operator T is continuous
with respect to the norm

( 1 ) T(p(s): <_2f_)’1;—‘1—(s‘+...+,”)

- o(k—s).

(27r )’-‘§—<«x+-~+sm>
2
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k 1
loll=( / (@et )%|¢(@) | dz)-.
P
Proposition 2. 7% is the identical mapping.
Proposition 3. 4, T,o(x) =<—%’l)n(det )T, ().
Proof. For
F(31+2> .. -F( 3n+2)
nk 8g+eeet8y
AnTkgo(s):(z—n)T_( wh g 2 2
l F(k—81>.“1—1<k—8n>
2 2
Proposition 4. If ¢(x)eM, is a common eigenfunction for T7,

with arbitrary k>0, then ¢(x) is of the form cexp(——z—zf-tr x)
Proof. By Proposition 2 we have
o(8)==T,p(s) for k>0,

Ch—8y)+ o+ Co—3m) _
and by the equality (1) ( >—”“+_ . o(k—s)

k—s.\. .. <Ic—-s,,>
(%32 r(*5
must be independent of k. Therefore

o= 5 () ()

Proposition 5. If £>0 the operator defined by the formula (1)
is a continuous linear mapping on M, with respect to the norm

k
llpllz= [ det 27| ¢(a) | d.
P

o(k—s).

4. Higher dimensional Bessel functions. In the case n=1
_k
the function J},(t*) is equal to <:4,2£> ¢ 7J§_1(ﬁ;—r—t). As an analogy

to this case we define the Bessel function of dimension % by the

equality
(45 et a3 72((42) )= Tz rs@)

for zeP, (Note that J,(x)=JX(x%)!) Then we have

4 \neCotee oo

" )
F<v+ —%) (u-l-l—%)

(o))

(s (e

J(s—v)

( A )”‘2”"'2) DD _(8y4eeetm)
A

Proposition 6. Jr(s)=
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We have now a few formulas similar to the ordinary Bessel
functions.

Proposition 7.

2) 4,(det &) T(@)=2"(det #) 3 Jru(e),

y—1 v

b) 4,((det 2) 3 Ja@)=(—2)det & s I ().

Proof of a). The Mellin transform of both sides are
p(él) p<31+2.>...

2 2
S+ 8, and 2. .
' p<_2_v_t22;sl_>... p@»izzj_l)...

Moreover we have the following Bessel differential equation:
Proposition 8.
(An_VAn-l"l'UzAn-z_ v +(_V)n_141+(_v)n)
(dy+vd, i+ o A ") = (—4)"det - 7.
Proof. (s;—v)---(8,—v)(814v): (8, +v)J(s)=(—4)"J*(s+2).
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