196 [Vol. 40,

44. On the Theorems of Constantinescu-Cornea

By Teruo IKEGAMI
University of Osaka Prefecture
(Comm. by Kinjir6 KUNUGI, M.J.A., March 12, 1964)

1. Let f be a non-constant analytic mapping from a hyperbolic
Riemann surface R into an arbitrary Riemann surface R’. C. Con-
stantinescu and A. Cornea defined” a cluster set and developed the
theorem of Riesz and the theorem of Fatou. Their cluster set is
defined by means of the operator I and the argument is carried out
mechanically. We shall give here an intuitive interpretation of this
cluster set by the notion of thinness due to L. Naim.?

2. We can define the Martin boundary 4 of R, and the set of
minimal boundary points 4, For sc4, and an open subset G in R
Constantinescu-Cornea defined

IK,=sup{u(p); weHP(7), <K, in G},
where K, is the minimal positive harmonic funection in R correspond-
ing to s and 7 is an identity mapping from G into B. By definition,
ue HP(p) if and only if for every relatively compact open set G,CR,
Hi"%'=y in GG, where HF" denotes the solution of the Dirichlet
problem with the boundary function # on (G G)(NG* and 0 else
where. Further, if GIKséEO they set sed,(G) and the cluster set is

defined as follows:

M(s)= N _F@G),

S€ 41()
F(G) is the closure of f(G) in R’ (compactification of R’).?

We shall here remark that the set 4,(G) permits the potential
theoretic view. In fact, Constantinescu-Cornea showed that the
following equality holds in G:

GIKssz—-HI‘?S.“)
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On the other hand, L. Naim defined the thinness of a set at the
minimal boundary point and gave the criterion:” “the set FCR is
thin at se4, if and only if &F "=K,, where &% " denotes the ex-
tremization of K, on R—F”.* If R—F is open then &%"=HZ" in
R—F. Hence we can get the relation: sed,(G) implies that the
set R—G 1is thin at s and vice versa.
From this point of view some properties of 4,(G) are easily seen,
for example, 4,(G,\)N4(G;)=4,(G,NG,) is verified as follows: if F
is thin at s and F,CF, then F, is also thin at s, therefore
4(G) N 4y(G)D4,(G, N Go).
On the other hand, if F, and F, are thin at s then F,JF, is thin
at s, therefore
4,(G) N 4(G)T4,(G, N Go).
3. Next, we shall give a proof of the theorem of Riesz from
our point of view.
Lemma. If u is a positive harmonic function in R and

up)= [ K®)dp(s)
and F is a set of 4, in R ﬁwn
Eip)= | Ex(p) du(s).
/

Proof. It is known that &Z(p)= f u(q)de,(g) where de) denotes
the mass-distribution defined by sweeping out the unit mass at p
on F. For (q,s)eF x4, K(q9) is a positive measurable function in
(g, s) we can adapt the Fubini’s theorem:

&)= [uadesn = [| [K@dns |dea

41

= [| [K@deia) |ans)
= [ wan)

41
Before stating the theorem of Riesz, we shall define some notions.
Let us assume that R’ 1s also hyperbolic, then we can construct
the Martin space R’ The set A’ in R is polar if there exists
a positive superharmonic function S’ such that
lim S'(p’)=+ o holds for each ¢'c¢A’.
-4
The canonicai representation of 1:
1= f K. dax(s)
41
7) Cf. L. Naim, lc., p. 201 and théoréme 5, p. 205.
8) Cf. L. Naim, l.c., p. 192.

9) The set of ¥, is defined as the set which is a union of countable closed sets.
10) Cf. L. Naim, l.c., p. 192.
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gives the mass-distribution x. Let A be the Borel subset of 4,
if x(A)=0 then we shall say that A is of harmonic measure zero.

Theorem of Riesz. Let A’ be a polar set on R'. For some set
AC 4, if the relation M (s)CA’ holds for every scA, then A is of
harmonic measure zero.

Proof. Let S’ be a positive superharmonic function on R’ such
that

S'(f(py)) % + 0'?
and
lim S'(p)=+oo.
> €A
We write for each a>0

G.={p'eR’; S'(p")>a}

G.=r(Go).
Let s belong to A then for every a>0 there exists an ¢>0 such
that G’(ﬁf(s), )G, where G’(Jl/l\f(s), ¢) denotes the intersection of
R’ and the e-neighbourhood of ﬂf(s) in the Martin space ﬁ’, then

sedl(f"(G’(ﬁf,, €)))C4,(G,) therefore we shall have for every a>0,
AC4,(G,). If we show that lim y(4,(G.))=0, then we shall get A
a—-4o00

is of harmonic measure zero. The proof of lim x(4,(G.))=0 is as
a—-+oo
follows: we shall write S(p)=S'(f(p)), then S is a positive super-
harmonic funection on R, and
1s>1 on G,
[44

therefore
lgsere i R
(44

From 1= f K. dx(s) and the preceding lemma

41
erve= [ermdye)= [ eyt [ Exedys).
41 41(Gg) 41— 41(Gg)
For se4,(G), R—G, is thin at s and R is not thin at s therefore G,
is not thin at s hence &f “*=K,. Hence

2S0)2 )= [ K(p)x(s).
@ 41G@a)
For p=p, we get }—S(po)zx(dl(Ga)) and a—+ o we get the desired
result. “
4. Constantinescu-Cornea showed that for an open set GCR,

11) Cf. L. Naim, l.c., p. 198.
12) p, is the point of normalization for Martin’s kernel K (p) — that is for p, ¢

in R and for Green function of R, g(», q), Kq(p)=—"l(—p—’—ql—,
9(po, 9)
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and for a positive harmonic function wu(p)= f K (p)du(s),

4
E’Iu:/‘de,u(s).””
eq 41(6
As in the preceding proof we can see

Elu<&EiF<u.
[exed

Theorem 1. Let ReU™ and G be an open set. Then if one of

the components of G belongs to the class U then
&rxl,

and if 4—4,(G) is of harmonic measure zero then at least one
components of G belongs to U'®

Proof. Let R, be a component of G such that R,eU and u, be
a bounded minimal positive harmonic function in R, then we can
form

uw=inf{v; v is a non-negative superharmonie funection in R and
v>u, in R}

%, the regularization of u, is bounded minimal in R. Therefore
a4=21K,, s,€d;, but in this case we can show that s,e4,(G). Now
we shall assume that &7=1. This implies that x({s; se¢d,, K,=&5 =0
and this leads to a contradiction since K, = ;?80 and y({s,})>0. Next,

if y(4—4,(G))=0 then f K.dy(s)=1. Let K, be a bounded minimal

41(G@
positive harmonic function in R, then x({s,}) >0, therefore s,¢4,(G) and
u():Kao"_eg”so
is a bounded minimal positive harmonic function in some component
of G.

Remark. For an open set G we have
Alzdl(G)Udl(R“G)UA
where A=4,—[4,(G)U4,(R—G)] and these three sets are mutually
disjoint. The necessary condition of the above theorem means that
1(44(G))=0 and the sufficient condition means that x(4,(G))=1. More
precise condition is required. We shall remark that if y(4)=0, for
instance if the relative boundary of G is compact, the two conditions
g’glzl and €%%=1 are equivalent and we shall get:

Theorem 2. Let ReU and G be an open set of which relative
boundary is compact. If EF =1 then at least one of the components
of G belongs to U.

13) Cf. Constantinescu-Cornea, l.c., Satz 15/, S. 42.

14) A Riemann surface R¢ O belongs to the class U if R has at least one bounded
minimal positive harmonic function.

15) The hypothesis of the latter part means that EI1=1. Cf. Constantinescu-
Cornea, l.c., Folgesatz 7, S. 70. @@



