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(5.1)

5 For the proof of Theorem 1, we shall prove the following
Lemma.

2 f du flsin uL* (n; )-

2+- ()-(-0) og n+o (og n).

It may be noted that the upper limits of the Stieltjes integrals
in (3.4) and (5.1) are different.

Proof. We shall use the method of L. Lorch and D. J. Newman
[5. In order to simplify the following calculations, we shall prove

(5.2) L*(n-- 1; ) 2 sinud(r) +
7. U

+2 I(1)-(1-0)11og n/o (log n).
7

It is easily seen that (5.1) and (5.2) are equivalent for large n.
Replacing the factor {sin (2n+ 1)u}/sin u by {sin 2(n+ 1)u}/u in

(3.4) induces a bounded error, we obtain, from (2.2),

where

(5.3)

L*(n-- 1; )--2  n(U) +o(1),
7 U

Kn(u)--
4(l--r) sinu r1 +

r

For fixed and A with 0slA, we put

du -*f +f +f/u , ,
where

As to I:

d(r).

=L++I,

In the interval 0_<.u_<n we have

1_( 1 )-___ 1_,1+ 4(1 --r) sin u
.2
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whence

II K(u) l--]j’sin ,2nu d(r)
where V() is the total variation of (r) in the interval

Obviously, for 0 <u<

Hence,

where

Next,

I,-y K(u) du

sin d(r) +Eo,

fK-#du fl 2nu (log 2sa* )V(,,---I sin
r

d(r) l<- 1

so that, relaeing 2 by ,
(g.4) I- sin g() +N,

where

As to I:
(5.5)

Since K (u) we have

[Il

_
(log-) V().

As to Ia: From (5.3), we have

K(u)-- [(1)--+(1--0)] sin 2nu+

f-0( 1 )sin+ 4(1-- r) sin u1 +,
r

2nu d(r).

O<_r<_l.
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A** <__Further, for ./_.._<u_ 2
we have

1+ 4(1--r) sin 1+ 4(1--r) (A*)
r2 2

exp(_ 4(l-r) (A*) }
for large n.

Hence

1+ 4(1 ),sin

<f-;x{-a(1-
say. It may be noted that (A) is independent of n, and tends to
zero as A from the Lebesgue principle of dominated convergence.

Hence, we obtain

5_l,(1)_,(l_O)[f Isin2nu[ du+Ea,
u

where

E l_<O(A)f d__u _< (A) log n
u

for all large n. Here

f- ]sin 2nul du- f-i Isin 2nul _2.zc du+
u u

.A , .A ,

log /- 1 log n+E,2A
where El_<log A+C, with

2

C= sup fv lsin vl -v>u_l v
U

Thus,

(5.6)

where

Since

I-1 q(1)-(1-0) log n+E,

[E[ _< I,(1)-(1-0) {log A+C}+(A)log n.
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L*(n-- 1" ) 2 1 {I+L.q-I}+
log n log n log n

we obtain, from (5.4), (5.5), and (5.6),

lim supl 2 f du f-U- sinu d4(r) +
log n . r

+ (1)--(1--0)I _L(n--1; )
log n

Here we make e-0 and A->, and obtain our lemma.
Proof of Theorem 1. Since, the proof is quite similar to that

of Theorem 2, we shall sketch it briefly. Let

F(T)--

then
u

T/()+o (T), say.

Hence we obtain, by partial integration,

sinU d(r)
u r

1 () log’ +o (log ),

where 3 is an appropriate positive constant.
From the previous lemma, this completes the proof of Theorem 1.
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