43. On the Lebesgue Constants for Quasi-Hausdorff Methods of Summability. II

By Kazuo Ishiguro
Department of Mathematics, Hokkaido University, Sapporo
(Comm. by Kinjirô Kunugi, M.J.A., March 12, 1964)

§5. For the proof of Theorem 1, we shall prove the following Lemma.

$$
\begin{align*}
L_{o}^{*}(n ; \psi)=\frac{2}{\pi} & \int_{1}^{\sqrt{n}} \frac{d u}{u}\left|\int_{\dot{\delta}}^{1} \sin \frac{u}{r} d \psi(r)\right|+ \tag{5.1}\\
& +\frac{2}{\pi^{2}}|\psi(1)-\psi(1-0)| \log n+o(\log n)
\end{align*}
$$

It may be noted that the upper limits of the Stieltjes integrals in (3.4) and (5.1) are different.

Proof. We shall use the method of L. Lorch and D. J. Newman [5]. In order to simplify the following calculations, we shall prove

$$
\begin{align*}
L_{o}^{*}(n-1 ; \psi)= & \frac{2}{\pi} \int_{1}^{\sqrt{n}} \frac{d u}{u}\left|\int_{o}^{1} \sin \frac{u}{r} d \psi(r)\right|+ \tag{5.2}\\
& +\frac{2}{\pi^{2}}|\psi(1)-\psi(1-0)| \log n+o(\log n)
\end{align*}
$$

It is easily seen that (5.1) and (5.2) are equivalent for large n.
Replacing the factor $\{\sin (2 n+1) u\} / \sin u$ by $\{\sin 2(n+1) u\} / u$ in (3.4) induces a bounded error, we obtain, from (2.2),

$$
L_{o}^{*}(n-1 ; \psi)=\frac{2}{\pi} \int_{0}^{\pi / 2}\left|K_{n}(u)\right| \frac{d u}{u}+O(1),
$$

where

$$
\begin{equation*}
K_{n}(u)=\int_{\delta}^{1}\left(\frac{1}{1+\frac{4(1-r)}{r^{2}} \sin ^{2} u}\right)^{\frac{n}{2}} \sin \frac{2 n u}{r} d \psi(r) \tag{5.3}
\end{equation*}
$$

For fixed ε and A with $0<\varepsilon<1<A$, we put

$$
\int_{0}^{\pi / 2}\left|K_{n}(u)\right| \frac{d u}{u}=\int_{0}^{\frac{\varepsilon}{\sqrt{n}} \partial^{\sigma^{*}}}+\int_{\frac{\varepsilon}{\sqrt{n}} \partial^{*}}^{\frac{A}{\sqrt{n}} \partial^{*}}+\int_{\frac{A}{\sqrt{n}} \partial^{*}}^{\pi / 2}=I_{1}+I_{2}+I_{3}
$$

where $\delta^{*}=\delta / \sqrt{2(1-\delta)}$.
As to I_{1} : In the interval $0 \leq u \leq \frac{\varepsilon}{\sqrt{n}} \delta^{*}$, we have

$$
1 \geq\left(\frac{1}{1+\frac{4(1-r)}{r^{2}} \sin ^{2} u}\right)^{\frac{n}{2}} \geq 1-\varepsilon^{2}
$$

whence

$$
\left|\left|K_{n}(u)\right|-\left|\int_{\delta}^{1} \sin \frac{2 n u}{r} d \psi(r)\right|\right| \leq \varepsilon^{2} V(\psi)
$$

where $V(\psi)$ is the total variation of $\psi(r)$ in the interval $0 \leq r \leq 1$. Obviously, for $0 \leq u \leq \frac{\pi}{2}$,

$$
\left|\left|K_{n}(u)\right|-\left|\int_{\delta}^{1} \sin \frac{2 n u}{r} d \psi(r)\right|\right| \leq \frac{2 n u}{\delta} V(\psi)
$$

Hence,

$$
\begin{aligned}
I_{1} & =\int_{0}^{\frac{\frac{6}{\sqrt{n}}}{} \partial^{*}}\left|K_{n}(u)\right| \frac{d u}{u} \\
& =\int_{0}^{\frac{\epsilon}{\sqrt{n}} \partial^{*}} \frac{d u}{u}\left|\int_{0}^{1} \sin \frac{2 n u}{r} d \psi(r)\right|+E_{0}
\end{aligned}
$$

where

$$
\begin{aligned}
\left|E_{0}\right| \leq & \leq V(\psi) \int_{0}^{\frac{\epsilon}{n} \partial^{*}} \frac{2 n u}{\delta} \frac{d u}{u}+V(\psi) \int_{\frac{\delta}{n} \delta^{*}}^{\frac{\varepsilon}{\sqrt{n}} \delta^{*}} \varepsilon^{2} \frac{d u}{u} \\
& =\left(\frac{2 \varepsilon \delta^{*}}{\delta}+\frac{\varepsilon^{2}}{2} \log n\right) V(\psi) .
\end{aligned}
$$

Next,

$$
\int_{\frac{\varepsilon}{\sqrt{n}} \partial^{*}}^{\frac{1}{2 \sqrt{n}}} \frac{d u}{u}\left|\int_{\delta}^{1} \sin \frac{2 n u}{r} d \psi(r)\right| \leq\left(\log \frac{1}{2 \varepsilon \delta^{*}}\right) V(\psi)
$$

so that, replacing $2 n u$ by u,

$$
\begin{equation*}
I_{1}=\int_{1}^{\sqrt{n}} \frac{d u}{u}\left|\int_{0}^{1} \sin \frac{u}{r} d \psi(r)\right|+E_{1} \tag{5.4}
\end{equation*}
$$

where

$$
\begin{aligned}
\left|E_{1}\right| & \leq\left|E_{0}\right|+\left(\log \frac{1}{2 \varepsilon \delta^{*}}\right) V(\psi)+\frac{1}{\delta} V(\psi) \\
& \leq\left\{\frac{2 \varepsilon \delta^{*}}{\delta}+\frac{\varepsilon^{2}}{2} \log n+\log \frac{1}{2 \varepsilon \delta^{*}}+\frac{1}{\delta}\right\} V(\psi) .
\end{aligned}
$$

As to I_{2} : Since $\left|K_{n}(u)\right| \leq V(\psi)$, we have

$$
\begin{equation*}
\left|I_{2}\right| \leq\left(\log \frac{A}{\varepsilon}\right) V(\psi) \tag{5.5}
\end{equation*}
$$

As to I_{3} : From (5.3), we have

$$
\begin{aligned}
K_{n}(u)=[\psi(1) & -\psi(1-0)] \sin 2 n u+ \\
& +\int_{0}^{1-0}\left(\frac{1}{1+\frac{4(1-r)}{r^{2}} \sin ^{2} u}\right)^{\frac{n}{2}} \sin \frac{2 n u}{r} d \psi(r) .
\end{aligned}
$$

Further, for $\frac{A \delta^{*}}{\sqrt{n}} \leq u \leq \frac{\pi}{2}$, we have

$$
\begin{gathered}
\left(\frac{1}{1+\frac{4(1-r)}{r^{2}} \sin ^{2} u}\right)^{\frac{n}{2}} \leq\left(\frac{1}{1+\frac{4(1-r)}{r^{2}}\left(\frac{2}{\pi}\right)^{2} \frac{\left(A \delta^{*}\right)^{2}}{n}}\right)^{\frac{n}{2}} \\
\leq \exp \left\{-\frac{4(1-r)}{r^{2}} \frac{\left(A \delta^{*}\right)^{2}}{\pi^{2}}\right\}
\end{gathered}
$$

for large n.
Hence

$$
\begin{aligned}
& \left|\int_{\delta}^{1-0}\left(\frac{1}{1+\frac{4(1-r)}{r^{2}} \sin ^{2} u}\right)^{\frac{n}{2}} \sin \frac{2 n u}{r} d \psi(r)\right| \\
& \quad \leq \int_{\delta}^{1-0} \exp \left\{-\frac{4(1-r)}{r^{2}} \frac{\left(A \delta^{*}\right)^{2}}{\pi^{2}}\right\}|d \psi(r)|=\phi(A)
\end{aligned}
$$

say. It may be noted that $\phi(A)$ is independent of n, and tends to zero as $A \rightarrow \infty$ from the Lebesgue principle of dominated convergence.

Hence, we obtain

$$
I_{3}=|\psi(1)-\psi(1-0)| \int_{\frac{A}{\sqrt{n}} 0^{*}}^{\frac{\pi}{2}} \frac{|\sin 2 n u|}{u} d u+E_{3}
$$

where

$$
\left|E_{3}\right| \leq \phi(A) \int_{\frac{A}{\sqrt{n}}{ }^{\sigma^{*}}}^{\frac{n}{3}} \frac{d u}{u} \leq \phi(A) \log n
$$

for all large n. Here

$$
\begin{aligned}
\int_{\frac{A}{\sqrt{n}} \delta^{*}}^{\frac{\pi}{2}} \frac{|\sin 2 n u|}{u} d u & =\int_{\frac{A}{\sqrt{n}} \delta^{*}}^{\frac{\pi}{2}} \frac{|\sin 2 n u|-\frac{2}{\pi}}{u} d u+ \\
& +\frac{2}{\pi} \log \frac{\pi \sqrt{n}}{2 A}=\frac{1}{\pi} \log n+E_{4}
\end{aligned}
$$

where $\left|E_{4}\right| \leq \log A+C$, with

$$
C=\sup _{V>V \geqq 1}\left|\int_{V}^{V} \frac{|\sin v|-\frac{2}{\pi}}{v} d v\right|<\infty .
$$

Thus,

$$
\begin{equation*}
I_{3}=\frac{1}{\pi}|\psi(1)-\psi(1-0)| \log n+E_{5} \tag{5.6}
\end{equation*}
$$

where

$$
\left|E_{5}\right| \leq|\psi(1)-\psi(1-0)|\{\log A+C\}+\phi(A) \log n .
$$

Since

$$
\frac{L_{\delta}^{*}(n-1 ; \psi)}{\log n}=\frac{2}{\pi} \frac{1}{\log n}\left\{I_{1}+I_{2}+I_{3}\right\}+O\left(\frac{1}{\log n}\right)
$$

we obtain, from (5.4), (5.5), and (5.6),

$$
\begin{aligned}
& \left.\limsup _{n \rightarrow \infty}\left|\frac{2}{\pi \log n} \int_{1}^{\sqrt{n}} \frac{d u}{u}\right| \int_{\delta}^{1} \sin \frac{u}{r} d \psi(r) \right\rvert\,+ \\
& \left.\quad+\frac{2}{\pi^{2}}|\psi(1)-\psi(1-0)|-\frac{L_{o}^{*}(n-1 ; \psi)}{\log n} \right\rvert\, \\
& \quad \leq \frac{\varepsilon^{2}}{\pi} V(\psi)+\frac{2}{\pi} \phi(A)
\end{aligned}
$$

Here we make $\varepsilon \rightarrow 0$ and $A \rightarrow \infty$, and obtain our lemma.
Proof of Theorem 1. Since the proof is quite similar to that of Theorem 2, we shall sketch it briefly. Let

$$
F(T)=\int_{0}^{T} d u\left|\int_{0}^{1} \sin \frac{u}{r} d \psi(r)\right|
$$

then

$$
\begin{aligned}
F(T) & =T \mathscr{M}\left\{\left|\sum_{k}\left[\psi\left(\xi_{k}+0\right)-\psi\left(\xi_{k}-0\right)\right] \sin \frac{u}{\xi_{k}}\right|\right\}+o(T) \\
& =T \mathscr{M}(\psi)+o(T), \text { say } .
\end{aligned}
$$

Hence we obtain, by partial integration,

$$
\begin{aligned}
\int_{1}^{\sqrt{n}} \frac{d u}{u}\left|\int_{\delta}^{1} \sin \frac{u}{r} d \psi(r)\right| & =\int_{1}^{\sqrt{n}} \frac{F^{\prime}(T)}{T} d T \\
& =\frac{1}{2} \mathscr{M}(\psi) \log n+o(\log n)
\end{aligned}
$$

where δ is an appropriate positive constant.
From the previous lemma, this completes the proof of Theorem 1.

References

[1] G. H. Hardy: Divergent Series. Oxford (1949).
[2] K. Ishiguro: The Lebesgue constants for (r, r) summation of Fourier series. Proc. Japan Acad., 36, 470-474 (1960).
[3] A. E. Livingston: The Lebesgue constants for (E, p) summation of Fourier series. Duke Math. Jour., 21, 309-313 (1954).
[4] L. Lorch: The Lebesgue constants for (r, r) summation of Fourier series. Canad. Math. Bull., 6, 179-182 (1963).
[5] L. Lorch and D. J. Newman: The Lebesgue constants for regular Hausdorff methods. Canad. Jour. Math., 13, 283-298 (1961).

