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36. A Property of Green’s Star Domain
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Mathematical Institute, Nagoya University

(Comm. by Kinjir6 KUNUGI, M.,I.A., March 12, 1964)

Let R be a hyperbolic Riemann surface and g(p, o)be the Green
function on R with its pole o in R. The Geen’s star domain R’
with respect to R and o is the set of points in R which can be
joined by Green arcs issuing from o. We also assume that o is a
member of R,. We shall see that R, is a simply connected domain.
Hence we can map R, onto the open unit circular disc by a one-to-
one conformal mapping . We shall show that the image of a
singular Green line (i.e. a Green line on which g(p, o) has a positive
infimum) issuing from o by is a Jordan curve starting from (o)
and terminating at a point of the unit circumference. We denote
by N the totality of end points on the unit circumference of image
curves of singular Green lines issuing from o by the mapping
The main purpose of this paper is to show that N is of logarithmic
capacity zero.

1o Let R be a hyperbolic Riemann surface. This means that
there exists the Green function g(p, o) with the arbitrary given pole
o in R. We define the pair (r(p), O(p)) of local functions on R by
the relations

dr(p)/r(p)--dg(p, o)
dO(p) *dg(p, o).

By giving the initial condition r(o)-0, r(p) is the global function
e-(’) on R. Each branch of r(p)ei(’) can be taken as a local para-
meter at each point of R except possibly a countable number of
points at which d0(p)=0. A Green arc is an open arc on which
0(p) is a constant, being considered locally, and dO(p)#O. A Green
line is a maximal Green arc. We denote by G(R, o) the totality of
Green lines issuing from o. We set, for each LeG(R, o),

d(L)--sup(r(p); pL).
Clearly 0 d(L)_ 1. We say that L(e G(R, o)) is a singular Green
line if d(L)<l. We denote by N(R, o) the set of all singular Green
lines in G(R, o). We also denote by E(R, o) the totality of L in
G(R, o) such that the closure of L contains a point p(#o) with
d0(p)=0. Clearly G(R, o)N(R, o)E(R, o). We set

R, (o) (p e R; p eL for some L in G(R, o)).
We call the set R, the Green’s star domain with respect to R and
o. Then we see that
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LEMMA 1. The Green’s star domain R’ is a simply connected
domain.

Proof. Let q be a point in R,. Then there exists one and
only one L in G(R, o) with q eL. We denote by L(q)the half closed
subarc of L joining o and q. Since each branch of r(p)e) is a local
parameter at each point of L(q)(o) and 0(p) is a constant on L(q),
we can find a simply connectel domain G containing L(q)(o) such
that r(p)e is one-valued and univalent in G. We take a branch

of re such that arg((p))-0 on L(q). Then G contains a
sectorial domain S--(re; 0 r p, z) (p r(q), 0).
Since -(re; Orp, 0=) (--sis) is a Green arc issuing from
o, S is contained in R,. Hence we see that
(1) for any L(q), there exists a sectorial domain S such that

L(q)SR,.
From this, we see that R, is an open set. As each point q in R’
can be joined by the arc L(q)(o) with o in R,, so R’ is connected.
Hence R’ is a domain. Next we show that R, is simply connected.
Let J be a closed Jordan curve in R, and p-p(t) (0_t<_l) is a

continuous representation of J. For each r(0 <_r <_ 1), we denote by
p(t, ) the point on L(p(t))(o) such that r(p(t, r))’r(p(t))-l--r" 1.
Then from (1), it is easy to see that &’p-p(t, )(0<_t_<l) is a
closed Jordan curve in R,. Moreover, by using (1), p(t, ) is seen
to be a continuous mapping of (0_<t_<l)(0_<r_<l) into R’. Since
p(t, O)-p(t) and p(t, 1)-o, J (0_<r_<l) is a continuous deformation
of J to the one point o in R,. Thus R, is simply connected. Q.E.D.

LEMMA 2. Let be a one-to-one conformal mapping of R,
onto the open unit circular disc U:lzll and L--(L) for L in
G(R, o). Then L is a Jordan arc in U starting from (o) and
terminating at a point of the unit circumference C:[zl-1.

Proof. Let be a branch of r(p)e on R’. Then is a
one-valued analytic function in R, and

exists for any L in G(R, o). It is clear that L is a Jordan are in

U and L-,C. Contrary to the assertion, assume that L,C is
not one point. Then applying Theorem of Koebe-Gross (see p. 5 in
Noshiro’s book [3_) to the function O(q-(z)), we conclude that
O(-(z)) is identically a in U, whieh is a contradiction. Q.E.D.

2. As before, let be a one-to-one eonformal mapping of R’
onto U:lz[<l. We denote by z the point on C’lzl-1 at whieh

L-q(L) (L s G(R, o)) terminates. We set
N-- (z; L N(R, o)).

Similarly we set E--(z,; LeE(R, o)). Clearly E is contained in N.
Now we state our main result.
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THEOREM 1. The outer logarithmic capacity of N is zero.

Proof. Let (Rn),% be a normal exhaustion of R with o eR.
For each positive number a, we set V(a, n)-(R--R,)(peR; g(p, o)_>_a).
We say that a is admissible if V(a, n)# for all positive integers n.
Then there exists a positive harmonic function u(p) on R such that
( 2 limn infa,u(p)--
for any admissible positive number a and

( 3 D(min(u(p), c))=., Igrad min(u(p(z)), c) ldxdy

_
2zc

for any positive number c, where u(p(z)) is a local representation of
u(p) by the local parameter z-x+iy. For the existence of such a
function u(p), see Nakai [2.

Let v-uo- in U’lzl<l and v* be a conjugate harmonic func-
tion of v in U. Then

f(z) 1/(v(z) + iv* (z))
is an analytic function in U with strictly positive real part in U.
Let L be in N(R, o)--E(R, o). Then L(R--Rn)c V(--log d(L), n).
Hence by (2), u(p) has the asymptotic value along L. Thus v(z)
has the asymptotic value o along L and so f(z)has the asymptotic
value 0 along L. Since Re[f(z)>0 in U, by Theorem of LindelSf-
Iversen-Gross (see p. 5 in Noshiro’s book [3), we get that
(4) f(z) has the angular limit 0 at each point e in N--E.

Let be the Riemann covering surface of the w-plane generatecl
by w=f(z) and s(p) denote the spherical area of the part of above
]w] < p. Put A(p)--(ze U; If(z)[ p) and A,--A(p/2n)-A(p/2n+). Then,
since

Iv(z)

_
lilY(z)]

_
2

on /, by using (3), we get

ff ]f’(z)12 z_reis(p/2n)--s(p/2n/ ) (1 --If(z) ])
rdrdO,

An

__ff Igrad v(z)llf(z)l
. (l+lf(z)12)

.rgrgo

<_ (p/2)D(min(u(p(z)), 2//p))_
(p/2’)2(2 /p) 4(p/8).

Hence we get that
s(p)-- Z,%o(S(p/2)--s(p/2 ))

_
4Z=op/8n,

that is
( 5 <_ > 0).
On the other hand, we denote by a(p) the spherical area of the part
of q above Iw[>_p. We put V(p)-(zeU; If(z)[>_p). Since

Iv(z)]

_
l/If(z)]

_
lip
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on V(p), similarly as above, we get

a(p)--=. (1 + ]f(z)l)
rdrdO, z-

=ff ]grad v(z)llf(z)[’

<fflgrad v(z)]rdrdO_
D(min(u(p), l/p)

_
2/p.

From this and (5), it follows that
(6) the spherical area of q is finite.
It also follows from (5) that
7 lim inf0 s(p)/p--O.

This means that 0 is an ordinary value of f(z) in the sense of
Beurling. Thus from (6) and (7), by using Beurling’s theorem (see
Theorem 6, p. 114 in Noshiro’s book 3), we conclude that the set
X of points in C: Izl-1, where f(z) has the angular limit 0, is of
logarithmic capacity zero. From (4), it follows that N,--EX and
since E is at. most countable, we conclude that N is of logarithmic
capacity zero. This completes the proof.

:. Take a branch of r(p)e on R,. Then is a one-to-
one conformal mapping of R’ onto the "radial slits disc"

where N is a subset of (0, 2 such that for each t e N, (pe;
is the image of singular Green line in G(R, o) by . We also denote
by E the totality of teN such that zte" is the image of branch point
of g(p, o) in R by . We can use the function u(p) in the proof of
Theorem 1 to prove the following

THEOREM 2 (Brelot-Choquet EI). The linear measure of N is
zero.

Proof. Let N(a0) denote the set (t; t e N, e <_a). Since measure
(N)--sup>0 measure (N), we have only to show that measure (N)--0
for an a0. Clearly (0, 2=--N is open and so N is closecl. Since
E is countable, N--E is a Borel set. Let w(z)-u(-(z))on U,,
where u is as in the proof of Theorem 1. Then by (2), for any
teN--E,
8 lim,/ w(pe) .

From (3), it also follows that
9 D,o (min(w(z), c))

_
2zc

for any positive number c. From (8), we get

w(re)dr,

where t eN--E and is a small positive number such as (z;
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c U’ and d-supli=w(z) and wc(z)-min(w(z), c).
equality, if cd,

rdr log

Thus we get
(c--d) measure (N)

Hence

By Schwarz’s in-

<_ Dvg, o(min(w(z),c), loga-a-_< 2c. log. a.

measure (Na) <_ 2c(c-d) loga-a-.
Since c is arbitrary, we conclude that measure(N)=0 by making
c/Zoo. Q.E.D.

It may be still an open question whether the logarithmic capacity
of N is zero or not. However, our Theorem 1 assures that if we,

map U, onto U:tzl<l one-to-one conformally, then the image of
(ei; teN) is of logarithmic capacity zero.
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