36. A Property of Green's Star Domain

By Mitsuru Nakai
Mathematical Institute, Nagoya University
(Comm. by Kinjirô Kunugi, m.J.A., March 12, 1964)

Let R be a hyperbolic Riemann surface and $g(p, o)$ be the Green function on R with its pole o in R. The Geen's star domain $R^{g, o}$ with respect to R and o is the set of points in R which can be joined by Green arcs issuing from o. We also assume that o is a member of $R^{g, o}$. We shall see that $R^{g, o}$ is a simply connected domain. Hence we can map $R^{g, o}$ onto the open unit circular disc by a one-toone conformal mapping φ. We shall show that the image of a singular Green line (i.e. a Green line on which $g(p, o)$ has a positive infimum) issuing from o by φ is a Jordan curve starting from $\varphi(o)$ and terminating at a point of the unit circumference. We denote by N_{φ} the totality of end points on the unit circumference of image curves of singular Green lines issuing from o by the mapping φ. The main purpose of this paper is to show that N_{φ} is of logarithmic capacity zero.

1. Let R be a hyperbolic Riemann surface. This means that there exists the Green function $g(p, o)$ with the arbitrary given pole o in R. We define the pair $(r(p), \theta(p))$ of local functions on R by the relations

$$
\begin{cases}d r(p) / r(p) & =-d g(p, o) \\ d \theta(p) & =-{ }^{*} d g(p, o) .\end{cases}
$$

By giving the initial condition $r(o)=0, r(p)$ is the global function $e^{-g(p, 0)}$ on R. Each branch of $r(p) e^{i \theta(p)}$ can be taken as a local parameter at each point of R except possibly a countable number of points at which $d \theta(p)=0$. A Green arc is an open arc on which $\theta(p)$ is a constant, being considered locally, and $d \theta(p) \neq 0$. A Green line is a maximal Green arc. We denote by $G(R, o)$ the totality of Green lines issuing from o. We set, for each $L \in G(R, o)$,

$$
d(L)=\sup (r(p) ; p \in L)
$$

Clearly $0<d(L) \leq 1$. We say that $L(\in G(R, o))$ is a singular Green line if $d(L)<1$. We denote by $N(R, o)$ the set of all singular Green lines in $G(R, o)$. We also denote by $E(R, o)$ the totality of L in $G(R, o)$ such that the closure of L contains a point $p(\neq 0)$ with $d \theta(p)=0$. Clearly $G(R, o) \supset N(R, o) \supset E(R, o)$. We set

$$
R^{g, o}=(o) \smile(p \in R ; p \in L \text { for some } L \text { in } G(R, o)) .
$$

We call the set $R^{g, o}$ the Green's star domain with respect to R and o. Then we see that

Lemma 1. The Green's star domain $R^{g, o}$ is a simply connected domain.

Proof. Let q be a point in $R^{q, o}$. Then there exists one and only one L in $G(R, o)$ with $q \in L$. We denote by $L(q)$ the half closed subarc of L joining o and q. Since each branch of $r(p) e^{i \theta(p)}$ is a local parameter at each point of $L(q) \smile(o)$ and $\theta(p)$ is a constant on $L(q)$, we can find a simply connected domain G containing $L(q) \smile(o)$ such that $r(p) e^{i \rho(p)}$ is one-valued and univalent in G. We take a branch ϕ of $r e^{i \theta(p)}$ such that $\arg (\phi(p))=0$ on $L(q)$. Then G contains a sectorial domain $S_{q}=\phi^{-1}\left(r e^{i \theta} ; \quad 0<r<\rho,-\varepsilon<\theta<\varepsilon\right) \quad(\rho>r(q), \quad \varepsilon>0)$. Since $\phi^{-1}\left(r e^{i \theta} ; 0<r<\rho, \theta=\eta\right)(-\varepsilon<\eta<\varepsilon)$ is a Green arc issuing from o, S_{q} is contained in $R^{q, o}$. Hence we see that
(1) for any $L(q)$, there exists a sectorial domain S_{q} such that

$$
L(q) \subset S_{q} \subset R^{q, o} .
$$

From this, we see that $R^{g, o}$ is an open set. As each point q in $R^{g, o}$ can be joined by the arc $L(q) \smile(o)$ with o in $R^{g, o}$, so $R^{g, o}$ is connected. Hence $R^{g, o}$ is a domain. Next we show that $R^{g, o}$ is simply connected. Let J be a closed Jordan curve in $R^{g, o}$ and $p=p(t)(0 \leq t \leq 1)$ is a continuous representation of J. For each $\tau(0 \leq \tau \leq 1)$, we denote by $p(t, \tau)$ the point on $L(p(t)) \smile(o)$ such that $r(p(t, \tau)): r(p(t))=1-\tau: 1$. Then from (1), it is easy to see that $J_{\tau}: p=p(t, \tau)(0 \leq t \leq 1)$ is a closed Jordan curve in $R^{g, o}$. Moreover, by using (1), $p(t, \tau)$ is seen to be a continuous mapping of $(0 \leq t \leq 1) \times(0 \leq \tau \leq 1)$ into $R^{g, o}$. Since $p(t, 0)=p(t)$ and $p(t, 1)=0, J_{\tau}(0 \leq \tau \leq 1)$ is a continuous deformation of J to the one point o in $R^{g, o}$. Thus $R^{q, o}$ is simply connected. Q.E.D.

Lemma 2. Let φ be a one-to-one conformal mapping of $R^{g, o}$ onto the open unit circular disc $U:|z|<1$ and $L_{\varphi}=\varphi(L)$ for L in $G(R, o)$. Then L_{φ} is a Jordan arc in U starting from $\varphi(o)$ and terminating at a point of the unit circumference $C:|z|=1$.

Proof. Let ϕ be a branch of $r(p) e^{i \theta(p)}$ on $R^{g, o}$. Then ϕ is a one-valued analytic function in $R^{g, c}$ and

$$
\alpha_{L}=\lim _{p \in L, r(p) \gamma a(L)} \phi(p)
$$

exists for any L in $G(R, o)$. It is clear that L_{φ} is a Jordan arc in U and $\bar{L} \frown C \neq \phi$. Contrary to the assertion, assume that $\bar{L} \frown C$ is not one point. Then applying Theorem of Koebe-Gross (see p. 5 in Noshiro's book [3]) to the function $\phi\left(\varphi^{-1}(z)\right)$, we conclude that $\phi\left(\varphi^{-1}(z)\right)$ is identically α_{L} in U, which is a contradiction. Q.E.D.
2. As before, let φ be a one-to-one conformal mapping of $R^{g, o}$ onto $U:|z|<1$. We denote by z_{L} the point on $C:|z|=1$ at which $L_{\varphi}=\varphi(L)(L \in G(R, o))$ terminates. We set

$$
N_{\varphi}=\left(z_{z} ; L \in N(R, o)\right) .
$$

Similarly we set $E_{\varphi}=\left(z_{L} ; L \in E(R, o)\right)$. Clearly E_{φ} is contained in N_{φ}. Now we state our main result.

Theorem 1. The outer logarithmic capacity of N_{φ} is zero.
Proof. Let $\left(R_{n}\right)_{n=1}^{\infty}$ be a normal exhaustion of R with $o \in R_{1}$. For each positive number a, we set $V(a, n)=\left(R-R_{n}\right) \frown(p \in R ; g(p, o) \geq a)$. We say that a is admissible if $V(a, n) \neq \phi$ for all positive integers n. Then there exists a positive harmonic function $u(p)$ on R such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf _{p \in V(a, n)} u(p)=\infty \tag{2}
\end{equation*}
$$

for any admissible positive number a and

$$
\begin{equation*}
D_{R}(\min (u(p), c))=\iint_{R}|\operatorname{grad} \min (u(p(z)), c)|^{2} d x d y \leq 2 \pi c \tag{3}
\end{equation*}
$$

for any positive number c, where $u(p(z))$ is a local representation of $u(p)$ by the local parameter $z=x+i y$. For the existence of such a function $u(p)$, see Nakai [2].

Let $v=u \circ \varphi^{-1}$ in $U:|z|<1$ and v^{*} be a conjugate harmonic function of v in U. Then

$$
f(z)=1 /\left(v(z)+i v^{*}(z)\right)
$$

is an analytic function in U with strictly positive real part in U. Let L be in $N(R, o)-E(R, o)$. Then $L \frown\left(R-R_{n}\right) \subset V(-\log d(L), n)$. Hence by (2), $u(p)$ has the asymptotic value ∞ along L. Thus $v(z)$ has the asymptotic value ∞ along L_{φ} and so $f(z)$ has the asymptotic value 0 along L_{φ}. Since $\operatorname{Re}[f(z)]>0$ in U, by Theorem of Lindelöf-Iversen-Gross (see p. 5 in Noshiro's book [3]), we get that
(4) $f(z)$ has the angular limit 0 at each point $e^{i \theta}$ in $N_{\varphi}-E_{\varphi}$.

Let Φ be the Riemann covering surface of the w-plane generated by $w=f(z)$ and $s(\rho)$ denote the spherical area of the part of Φ above $|w|<\rho$. Put $\Delta(\rho)=(z \in U ;|f(z)|<\rho)$ and $\Delta_{n}=\Delta\left(\rho / 2^{n}\right)-\Delta\left(\rho / 2^{n+1}\right)$. Then, since

$$
|v(z)| \leq 1 /|f(z)| \leq 2^{n+1} / \rho
$$

on Δ_{n}, by using (3), we get

$$
\begin{aligned}
s\left(\rho / 2^{n}\right)-s\left(\rho / 2^{n+1}\right) & =\iint_{\Delta n} \frac{\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}} r d r d \theta, z=r e^{i \theta} \\
& =\iint_{\Delta n} \frac{\mid g r a d}{\left.v(z)\right|^{2}|f(z)|^{4}} \frac{\left(1+|f(z)|^{2}\right)^{2}}{(1) d r d \theta} \\
& \leq \iint_{\Delta n}\left(\rho / 2^{n}\right)^{4}|\operatorname{grad} v(z)|^{2} r d r d \theta \\
& \leq\left(\rho^{4} 2^{4 n}\right) D_{R}\left(\min \left(u(p(z)), 2^{n+1} / \rho\right)\right) \\
& \leq\left(\rho^{4} / 2^{4 n}\right) 2 \pi\left(2^{n+1} / \rho\right)=4 \pi\left(\rho^{3} / 8^{n}\right) .
\end{aligned}
$$

Hence we get that

$$
s(\rho)=\sum_{n=0}^{\infty}\left(s\left(\rho / 2^{n}\right)-s\left(\rho / 2^{n+1}\right)\right) \leq 4 \pi \sum_{n=0}^{\infty} \rho^{3} / 8^{n}
$$

that is

$$
\begin{equation*}
s(\rho) \leq 5 \pi \rho^{3} \quad(\rho>0) \tag{5}
\end{equation*}
$$

On the other hand, we denote by $\alpha(\rho)$ the spherical area of the part of Φ above $|w| \geq \rho$. We put $\nabla(\rho)=(z \in U ;|f(z)| \geq \rho)$. Since

$$
|v(z)| \leq 1 /|f(z)| \leq 1 / \rho
$$

on $\Gamma(\rho)$, similarly as above, we get

$$
\begin{aligned}
a(\rho) & =\int_{V(\rho)} \int_{(} \frac{\left|f^{\prime}(z)\right|^{2}}{\left(1+|f(z)|^{2}\right)^{2}} r d r d \theta, z=r e^{i \theta} \\
& =\int_{\nabla(\rho)} \int^{\mid g r a d} \frac{|g(z)|^{2}|f(z)|^{4}}{\left(1+|f(z)|^{2}\right)^{2}} r d r d \theta \\
& \leq\left.\int_{\nabla(\rho)} \int_{\rho} \operatorname{lgrad} v(z)\right|^{2} r d r d \theta \\
& \leq D(\min (u(p), 1 / \rho) \leq 2 \pi / \rho .
\end{aligned}
$$

From this and (5), it follows that
(6) the spherical area of Φ is finite.

It also follows from (5) that
(7)
$\lim \inf _{\rho \rightarrow 0} s(\rho) / \pi \rho^{2}=0$.
This means that 0 is an ordinary value of $f(z)$ in the sense of Beurling. Thus from (6) and (7), by using Beurling's theorem (see Theorem 6, p. 114 in Noshiro's book [3]), we conclude that the set X of points in $C:|z|=1$, where $f(z)$ has the angular limit 0 , is of logarithmic capacity zero. From (4), it follows that $N_{\varphi}-E_{\varphi} \subset X$ and since E_{φ} is at most countable, we conclude that N_{φ} is of logarithmic capacity zero. This completes the proof.
3. Take a branch ϕ of $r(p) e^{i \theta(p)}$ on $R^{g, o}$. Then ϕ is a one-toone conformal mapping of $R^{g, o}$ onto the "radial slits disc"

$$
U^{g, o}=(z ;|z|<1)-\bigcup_{t \in N}\left(\rho e^{i t} ; \quad 0<\varepsilon_{t} \leq \rho<1\right),
$$

where N is a subset of $(0,2 \pi]$ such that for each $t \in N,\left(\rho e^{i t} ; 0<\rho<\varepsilon_{t}\right)$ is the image of singular Green line in $G(R, o)$ by ϕ. We also denote by E the totality of $t \in N$ such that $\varepsilon_{t} e^{i t}$ is the image of branch point of $g(p, o)$ in R by ϕ. We can use the function $u(p)$ in the proof of Theorem 1 to prove the following

Theorem 2 (Brelot-Choquet [1]). The linear measure of N is zero.

Proof. Let $N_{a}(a>0)$ denote the set $\left(t ; t \in N, \varepsilon_{t} \leq a\right)$. Since measure $(N)=\sup _{a>0}$ measure $\left(N_{a}\right)$, we have only to show that measure $\left(N_{a}\right)=0$ for an $a>0$. Clearly ($0,2 \pi]-N_{a}$ is open and so N_{a} is closed. Since E is countable, $N_{a}-E$ is a Borel set. Let $w(z)=u\left(\phi^{-1}(z)\right)$ on $U^{g, o}$, where u is as in the proof of Theorem 1. Then by (2), for any $t \in N_{a}-E$,
(8)

$$
\lim _{\rho \lambda t_{t}} w\left(\rho e^{i t}\right)=\infty .
$$

From (3), it also follows that
(9)

$$
D_{U^{g, o}}(\min (w(z), c)) \leq 2 \pi c
$$

for any positive number c. From (8), we get

$$
c-d \leq \int_{i}^{s_{t}} \frac{\partial}{\partial r} w_{c}\left(r e^{i t}\right) d r
$$

where $t \in N_{a}-E$ and ε is a small positive number such as $(z ;|z| \leq \varepsilon)$
$\subset U^{g, o}$ and $d=\sup _{|z|=\varepsilon} w(z)$ and $w_{c}(z)=\min (w(z), c)$. By Schwarz's inequality, if $c>d$,

$$
(c-d)^{2} \leq \int_{\varepsilon}^{\varepsilon_{t}}\left|\frac{\partial}{\partial r} w_{c}\left(r e^{i t}\right)\right|^{2} r d r \cdot \log \frac{a}{\varepsilon} .
$$

Thus we get

$$
\begin{aligned}
& (c-d)^{2} \text { measure }\left(N_{a}\right) \\
& \leq \iint_{N_{a}}{ }^{{ }^{s} t}\left(\left|\frac{\partial}{\partial r} w_{c}\left(r e^{i t}\right)\right|^{2}+-\frac{1}{r^{2}}\left|\frac{\partial}{\partial t} w_{c}\left(r e^{i t}\right)\right|^{2}\right) r d r d t \cdot \log \frac{a}{\varepsilon} \\
& \leq D_{U^{g}, o}\left(\min (w(z), c) \cdot \log \frac{a}{\varepsilon} \leq 2 \pi c \cdot \log \frac{a}{\varepsilon}\right.
\end{aligned}
$$

Hence

$$
\text { measure }\left(N_{a}\right) \leq 2 \pi c(c-d)^{-2} \cdot \log \frac{a}{\varepsilon}
$$

Since c is arbitrary, we conclude that measure $\left(N_{a}\right)=0$ by making $c \nearrow \infty$.
Q.E.D.

It may be still an open question whether the logarithmic capacity of N is zero or not. However, our Theorem 1 assures that if we map $U^{g, o}$ onto $U:|z|<1$ one-to-one conformally, then the image of $\left(\varepsilon_{l} e^{i t} ; t \in N\right)$ is of logarithmic capacity zero.

References

[1] M. Brelot-G. Choquet: Espace et lignes de Green. Ann. Inst. Fourier, 3, 199-263 (1951).
[2] M. Nakai: Green potential of Evans type on Royden's compactification of a Riemann surface, to appear.
[3] K. Noshiro: Cluster Sets. Springer (1960).

