142. On a Construction of Annihilating Spaces

By Kazô Tsujı
Kyushu Institute of Technology
(Comm. by Kinjirô Kunugi, m.J.A., Oct. 12, 1964)

1. Throughout this note we will use the notations and results in a previous paper: Annihilators of von Neumann Algebras (Annihilating Spaces), Bull. Kyushu Inst. Tech., (M. \& N.S.), No. 10, pp. 25-39 (1963). We will quote it, whenever necessary, as [A.S.].

The trace-class (τc) of operators on a Hilbert space \mathfrak{F} is a Banach space with the norm $\tau(A)$ for every $A \in(\tau c)$. We shall denote by $t(A)$ the trace on (τc) and by $(\tau c)_{0}$ a closed subspace $\{A \mid t(A)=0\}$ of (τc). And every operator of rank ≤ 1 on \mathfrak{F} is represented by $f \otimes \bar{g}$ for f, $g \in \mathfrak{S}$. Hence we have $t(f \otimes \bar{g})=\langle f, g\rangle$.

Let \mathscr{I} be a closed subspace of $(\tau c)_{0}$ generated by operators of rank ≤ 1. If we put $\mathscr{M}_{\mathfrak{N}^{f}}=\{g \mid f \otimes \bar{g} \in \mathscr{I}\}$, then we can easily show that $\Psi_{\mathfrak{R}^{f}}$ is a closed linear subspace of \mathfrak{F} (cf. [A.S.], p. 30). Moreover, we put ${ }^{T} \mathfrak{M}_{f}=\mathfrak{S} \ominus^{T^{T}} \mathfrak{M}^{f}$.

Definition. A closed subspace \mathcal{I} of $(\tau c)_{0}$ is called an annihilating space in a Hilbert space \mathfrak{F}, if it satisfies the following conditions:
(1) \mathscr{I} is generated by operators of rank ≤ 1;
(2) \mathscr{I} is self-adjoint, i.e., if $A \in \mathscr{I}$, then $A^{*} \in \mathscr{I}$;
(3) if $g \in \mathbb{I}_{\mathfrak{M}_{f}}$, then ${ }^{T_{M_{g}}} \subset^{\Im_{1}} \mathfrak{M}_{f}$.

In [A.S.], we characterized the annihilator \Re^{\perp} of a von Neumann algebra \mathfrak{R} as an annihilating space (cf. [A. S., Theorem 1]). Our purpose of this note is to construct an annihilating space concretely in a sense.
2. We shall state

Lemma. Let \mathfrak{R} be a von Neumann algebra and let \mathfrak{R}^{\prime} be the commutant of \mathfrak{R}. Then a closed subspace \mathscr{I} of $(\tau c)_{0}$ generated by the set $\left\{f \otimes \bar{g}, g \otimes \bar{f} \mid f \in E(\mathfrak{g}), g \in(I-E)(\mathfrak{I}), E \in \mathfrak{M}^{\prime}\right\}$ is an annihilating space.

Proof. It is clear that \mathscr{I} satisfies the conditions (1), (2) of the above Definition.

Let $\mathfrak{M}_{f}^{\mathfrak{F}}$ be a closed linear subspace of \mathfrak{J} generated by all the $X f(X \in \mathfrak{R})$. Hence the projection $E_{f}^{\Re /}$ on $\mathfrak{M}_{\beta}^{\Re}$ is an element of \mathfrak{R}^{\prime}. Therefore, by definition of $\mathcal{I}, \mathfrak{F} \ominus \mathfrak{M}_{f}^{\mathfrak{F}} \subset^{\mathscr{T}} \mathfrak{M}^{f}$. Consequently, we have $\mathfrak{M}_{f}^{\mathfrak{M}} \supset^{\mathscr{G}} \mathfrak{M}_{f}$ for every $f \in \mathfrak{H}$.

Now we shall show an inverse inclusion. If $f \in E(\mathfrak{g})$ and $g \in(I-E)(\mathfrak{M})$ for any $E \in \mathfrak{\Re}^{\prime}$, then we have $T f=T E f=E T f \in E(\mathfrak{g})$ for every $T \in \Re$. Therefore $t(T(f \otimes \bar{g}))=\langle T f, g\rangle=0$ for every $T \in \mathfrak{R}$.

Hence by [A. S., Theorem 1],

$$
\left\{f \otimes \bar{g}, g \otimes \bar{f} \mid f \in E(\mathfrak{I}), g \in(I-E)(\mathfrak{j}), E \in \mathfrak{K}^{\prime}\right\} \subset \mathfrak{R}^{\perp}
$$

Consequently, we have $\mathscr{I} \subset \mathfrak{R}^{\perp}$. Therefore $\mathscr{M}^{f} \subset^{\mathfrak{M}^{\perp} \mathfrak{M}^{f} \text { for every }}$ $f \in \mathfrak{I}$ and hence $\mathfrak{M}_{f} \supset^{\mathfrak{R} \perp} \mathfrak{M}_{f}$. But since we have ${ }^{\mathfrak{R}^{\perp} \mathfrak{M}_{f}=\mathfrak{M}_{f}^{\mathfrak{M}} \text { (cf. }}$ [A.S. Lemma, 7]), we have ${ }^{q} \mathbb{M}_{f} \supseteq \mathfrak{M}_{f}^{\mathfrak{F}}$ for every $f \in \mathfrak{g}$. Thus we have $\mathscr{M}_{f}=\mathfrak{M}_{f}^{M}$ for every $f \in \mathfrak{H}$. Therefore if $g \in \mathscr{I}_{\mathfrak{M}_{f}}=\mathfrak{M}_{f}^{\mathfrak{M}}$, then $\mathscr{I}_{M_{g}}=\mathbb{M}_{g}^{\Re} \subset \mathfrak{M}_{f}^{\Re /}={ }^{\mathscr{I}} \mathfrak{M}_{f}$.
Hence \mathscr{I} satisfies the condition (3) of the above Definition.
Theorem. Let \mathscr{I} be the annihilating space given in the above Lemma. Then we have $\mathscr{I}=\Re^{\perp}$. Therefore, $\mathfrak{R}=\mathscr{I}^{\perp}$.

Proof. In the proof of the above Lemma, we proved $\mathfrak{m}_{f}^{\Re}=\mathscr{T}_{M_{f}}=$ $\mathfrak{M}_{f}^{g^{\perp}}$ for every $f \in \mathfrak{F}$ (cf. [A.S., Lemma 7]). But \mathfrak{R}^{\prime} is generated by all the projections E_{f}^{\Re} and $\left(\mathscr{I}^{\perp}\right)^{\prime}$ is generated by all the projections $E_{f}^{\sigma^{\perp}}$. Therefore $\Re^{\prime}=\left(\mathscr{I}^{\perp}\right)^{\prime}$ and thus $\mathfrak{R}=\mathscr{I}^{\perp}$. Consequently, $\mathscr{I}=\Re \perp$.

Remark. Let \mathscr{I} be an annihilating space and let \mathfrak{N} be a subset
 be the projections on $\mathscr{I}_{M^{\Re}}, \mathbb{M}_{\mathfrak{M}}$ respectively. Then we can easily show that all the projections in $\left(\mathscr{I}^{\perp}\right)^{\prime}$ are the form ${ }^{\mathscr{G}} E^{\mathfrak{M}},{ }^{\mathscr{I}} E_{\mathfrak{\Re}}$. Hence an annihilating space \mathscr{I} not only is the annihilator of the von Neumann algebra \mathscr{I}^{\perp} but determines the commutant $\left(\mathscr{T}^{\perp}\right)^{\prime}$ of \mathscr{T}^{\perp} in the above mentioned sense.

