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137. A Duality Theorem for the Real Unimodular Group
of Second Order

By Nobuhiko TATSUUMA
(Comm. by Kinjirb KUG, M.b.A., Oct. 12, 1964)

Let G be the real special linear group of second order. G consists
of all real matrices g such that

g ad bc 1.
c d

The purpose of the present paper is to characterize G as a "dual"
of the space of its irreducible unitary representations. This space is
furnished with a law according to which the Kronecker product of
any two representations is decomposed into irreducible components.

This duality may be regarded as an analogue of the Tannaka’s
duality theorem in the case of compact groups.

Let K be a compact group, Tannaka’s duality theorem states the
following. Consider the totality X of irreducible unitary representa-
tions of K. The Kronecker product p(a of two elements in X is
decomposed into the direct sum @r of finite irreducible representa-

tions. In this decomposition, let u@ v is equal to @w, in which

u, v, w, are vectors in the spaces of representations p, a, r respec-
tively. An element k of K decides an operator field over X, which
consists of unitary matrices p(k) in each space of representation p.
And the decomposition of the Kronecker product ,o(k)u@a(k)v is equal
to @r(k)w. Conversely let {T(p)} be an operator field over X,

such that each T(p) is a unitary matrix in the space of representa-
tion p, and (T(p)u)@ (T(a)v) is equal to @(T(r)w), for any u and v.

The duality theorem affirms that the totality of operator fields as
above coincides with the original group K, that is, K is characterized
as a "dual" of the space of its irreducible unitary representations,
and the initial topology of K corresponds to the weakest topology
which makes all the matrix element (T(p)u, v) continuous.

Our main theorem characterizes G in the same way as for the
case of compact groups. Let be the set of all.equivalence classes
of irreducible unitary (therefore infinite-dimensional) representations
of G. We choose and fix a representation w={U(w), (w)} of G from
each element of . The Kronecker product U(a) @ Uq(r), (a)@(r)},
in which a, r are elements of 9, is decomposed into irreducible com-
ponents as follows.
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u (R) v- d,().

In this equality, u, v, and w(w) are vectors in (C)(a), (C)(r), and (C)(w)
respectively, and , is a measure on 9 depending only to a, r.

Let T={T(w)} be a unitary operator field over 9, T(w) being a
unitary operator in ().

Such a T is called admissible, if for arbitrary u, v,

T(a)u T(r)v--fT(w)w(w) dz.(w).

For instance any fixed element g in G gives an admissible unitary
operator field U U(w)}.

Now we define the product TS of two admissible operator fields
T={T(w)} and S={S(w)} by

TS(w) = T(o)S(w).
Then the totality )t of admissible unitary operator fields becomes a
group with this multiplication, and the mapping gU gives an
homomorphism from G into 9t. Our main theorem is stated as follows.

Theorem. The mapping g U is an isomorphism from G onto. And in this cprrespondence, the natural topology in G coincides
with the weakest topology, which makes all the matrix element
( U(w)u, v) (w: fixed) continuous.

1. Now we recall certain known facts on irreducible unitary
representations of G, which we make use to prove the main theorem.

a) V. Bargmann classified all irreducible unitary representations
of G to four series and to eight sub-series as follows.

1) Principal series,
i) integral (non-spinor) representation, C: (1/4/ ),

ii) half-integral (spinor) representation, C/ (1/4l ).
2) Supplementary series, C: (or E) (0</<1/4).
3) Discrete series,

i) positive non-spinor representation, D2 (n=l, 2,...),
ii) positive spinor representation, D2 (n= 1/2, 3/2,. .),
iii) negative non-spinor representation, D; (n= 1, 2,. .),
iv) negative spinor representation, D; (n=1/2, 3/2,...).

4) Identity representation, I.
b) Since the subgroup

((cos(0/2),--sin (0/2) }R- r(O)-
sin (/2), cos (/2)/; --2u<02

is abelian and compact, so the restriction of each irreducible repre-
sentation w of G to R is decomposed into direct sum of multiples of
one-dimensional representations p= {exp (ikO), H(w)}. In this case the
multiplicities are at most one for any k, and the index k runs;

k=0,l,2,.., for 1)--i) and 2),
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k- +/-(1/2), +/-(3/2),. for 1)-- ii),
k-n,n+l,n/2,.., for 3)-- i) and 3)--ii),
k---n,--n--1,--n-2,.., for 3)--iii) and 3)--iv),
k-0, for 4).

Hence we can choose an orthonormal basis {f(w)} in (), such that
f(o) is contained in H(w), these vectors are called weight vectors.
Here we select it as in the Bargmann’s paper

For brevity, we denote f(D+) by f and O(D+) by (C).
2. The knowledges on decompositions of Kronecker products of

these representations are not complete. But we can claim the follow-
ing lemmas.

Lemma 1. D+(R)D+. is decomposed to the discrete direct sum of
irreducible components as

D+(R)D+,-D+ (p>_m+n, p+m+n; integer).

And let this isomorphism be 9, then ((f’(R)f’), f} is zero for h-k+j,
and not zero when h--k+j for any admissible k, j, p. Especially for
D.(R)D, f in the component D+ is expanded as

f--,a,+/
0

and
a,o=av, O.

Lemma 2. D+ (R)o ((o-C[ or D) contains D+ (p> 1/2 or
p1/2, and p+m+t or p+m+n; integer) as a discrete component
with multiplicity one and put

<(fZ@f(w)), f>--$v,=_.c(w, k, m, p),
then c(w, k, m, p)0, for any admissible k, p.

These lemmas are immediately assured by calculations of weight
vectors as in Puknszky’s work (cf. [2] chap. II). So we don’t repeat
here.

3. Now we prove the theorem. At first, we call a normalized
vector v in / fundamental if (vv) belongs to in the irre-
ducible decomposition. We consider the condition that

is fundamental.
It is easy to see that for any unitary admissible operator field

T= {T(w)}, the vector TD+ r/ is fundamental. Especially for fixed
g in G, U (D+. r/ is fundamental.1/2]J 1/2

If v is fundamental then direct calculation shows
c(s)f/-aa__ +/

where c(s) is a constant depending only to s. From Lemma 1, and
linear independency of the family r/ r/

tJ k+1/2J s-k-1/21 we get
c(s)a, aa

_,
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i.e. as,oalas_
Considering as,o-a.l#O in Lemma 1, we get

a--(al/ao)ao.
And condition for the convergence of the series in (1) is

iallaol<l, (2)
the normalizing condition is

a0 I- (1--{al/ao {.)1/2. ( 3 )
1/2That is, fundamental vector is decided by the value, ao--(v,f/.) and

a/ao=(V,/m/ / (v, r///, satisfying the conditions (2) and (3).
In the other hand, if we take the unique expression

(co g=/sin 8/2, cos 8/2/ sh t/2, ch t/2/sin 0/2, cos /2/’
--2=<02, 0t<, --<,

then the matrix elements are
+ 1/2 /2X< U(D/)f/, exp (i(O+ )/2)(ch t/2)-J /2 /

< (D+ // + /, /,, ///< /=c exp (iO) tanh t/2, ]c 1= 1.
So the following lemma is valid.
Lemma 3. For any fundamental vector v, an element g in G

uniquely determined and
U (D+

Particularly,
Corollary. For any unitary admissible operator field T={T()}

there is unique element g in G such that

Moreover the elassieal theory on non-euelidean spaee G/R shows
that the topology of G coincides with the weak’ topology of totality
of fundamental vectors in / by this eorrespondenees.

Now we show that eaeh unitary admissible operator field {T(w)}
is uniquely determined by the vector TtD+/ar//. This assertion leads
us to prove the main theorem immediately.

I) At first the veetor TtD+r is determined by the reeurrenee
formula with respect to m,

+T(D )fZ f:/:
+c(T(D/)f/
+From Lemma 1, the vector T(D)f+_ is characterized as a vector

v in such that
i) TtD+

ii) v L T( )f2+,_, for k>s> 1.
iii) /,tTtD+ r/

/za/ @v), T(D+_a/2a+_/2/
1/2 0)d re+k--I/2 /

+ 1/2That is, T(D) is determined from T(D,/)f/2.
II) Lastly from Lemma 2, if w is C or D, then for any positive
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integer s such that s>1/2 or m--n>=s>l/2, and s+m-t or s+m+n
is an integer, D+ (R)o contains D+ as a discrete irreducible component.

And for given v, in @(o), let
v-, bf(),

then fro Lemma 2,

i.e.
n, v,

This means that the vector v is determined if the coefficient (f @v,
f:} is given. Now in this equation, let v=T(w)Vo for given vo, then
the equality

<f@ T(w)Vo, f-- ((T(D))-f@Vo), (T(D$))-f:},- f, therefore,gives the vector T(w)Vo from Vo, (T(D$)) f and (T(D:))-using the results of I), from T(D+//. This completes the proof.
The author wishes to thank Professors H. Yoshizawa and M.

Sugiura for their kind advices.
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