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134. The Number of Irreducible Components of an Ideal
and the Semi-Regularity of a Local Ring

By Shizuo ENDO® and Masao NARITA*®
(Comm. by Zyoiti SUETUNA, M.J.A., Oct. 12, 1964)

Let @ be a local ring with the maximal ideal m, and q be an m-
primary ideal of @. Then it is known that the number » of irreducible
components of q is equal to the length L,(q:m/q) of @-module q:m/q,
which was defined as the index of reducibility of q by D. G. Northcott
in his paper [1]. In the same paper, he proved that, if @ is semi-
regular, then the index of reducibility of an m-primary ideal gener-
ated by a system of parameters depends only on Q, and not on the
choice of the system of parameters (Theorem 3, [1]). Grobner’s
theorem, i.e. in a regular local ring, any ideal which can be gener-
ated by a system of parameters is irreducible, is a special case of this
theorem.

On the other hand, it is known that, in a local ring @, if the
index of reducibility of an m-primary ideal generated by a system
of parameters is equal to 1 constantly (i.e. if every ideal generated
by a system of parameters tis trreducible), then the ring Q is semi-
regular (see [2]). However it should be noticed that the condition
of this proposition is not a sufficient condition for the regularity of Q.

Concerning these results, the following question may be raised:

Can we conclude that the local ring Q is semi-regular if the
index of reducibility of an m-primary tdeal generated by a system
of parameters is equal to some comstant which s mot necessarily 1?

The main purpose of this paper is to answer this question.

Now we shall begin by proving the following theorem:

Theorem 1. Let Q be a local ring of dimension d, and m be
its maximal ideal. If m 1s generated by d or d+1 elements, and
if the index of reducibility of an m-primary ideal gemerated by a
system of parameters is equal to some constant which does not depend
on the choice of such an ideal, then every m-primary ideal generated
by a system of parameters is irreducible.

Proof. If m is generated by d elements, then @ is regular, and
the conclusion follows (see Grobner [3] or Northeott [17]).

Now we shall assume that the minimal basis of m consists of
d-+1 elements. Then it is easy to see that we can assume that m
is generated by Uy, Ug, -+ -, Uy, Ug,: Where {Uy, Us,- - -, u,} is a system of
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parameters. Consider LQ< (Z‘ Qu,.) tm }‘_,‘Qui) We shall prove that it
=1 i=1

is equal to 1. Let @ be Q i‘,Qui, and  be m/é Qu,. Then Q@ is
i=1 i=1

zero-dimensional, and m is generated by an element %,,,. Let ¢ be
an integer such that %},,=0, #.71x0, then (0):m=(us3i1). Conse-

quently Lg((0):m)=1. Therefore LQ«é Qui> tm é Qui> =1. Hence,
=1 =1

by the hypothesis of this theorem, the index of reducibility of an
ideal generated by a system of parameters is equal to 1 (i.e. such
an ideal is irreducible). Thus we have proved the theorem.

Corollary 1. If Q is a local ring satisfying the conditions of
Theorem 1, then Q is semi-regular.

Proof. It is known that, if every m-primary ideal generated by
a system of parameters is irreducible, then the ring is semi-regular
(see [2]). Therefore Corollary 1 follows from the Theorem.

A local ring, in which every ideal generated by a system of
parameters is irreducible, is called Gorenstein ring. Now we shall add
another corollary to be used later.

Corollary 2. Let Q be a d-dimensional semi-regular local ring,
and let m be its maximal ideal. If m s generated by d or d-+1
elements, then @ is a Gorenstein ring. (This corollary, for the case
d=1, was given in [4], Prop. 6.4.)

Proof. By virtue of the result due to Northcott [1], Corollary
2 is a direct consequence of Theorem 1.

Theorem 1 gives an affirmative answer to the question stated at the
beginning of this paper in a special case. However, we shall show
that, if the dimension of @ is d and its maximal ideal is generated
by d'(d’=d+2) elements, then the answer to the question is negative.
We shall give a counter example.

Let k be a field, F=k[[X, Y, Z,, Z,,---, Z,]] be a formal power
series ring in n+2 indeterminates X, Y, Z,, Z,,- -+, Z,, and M be the

maximal ideal of F. Suppose & be an element of F' such that £e9%?
$¢Z”}FZi and the image of £ in the residue ring F' ﬁ}FZi is prime.
i=1 i=1

(If k£ does not contain J—1, X%+ Y? may be the simplest example of
such & If k contains J/—1, X*—Y?® may be the simplest one.) Itis

obvious that the residue ring Q:F/ <F§+Z”‘, SJ}Z,) is a one-dimensional

i=1

local ring and its maximal ideal m is generated by =z, ¥, 24, 25, - *, 2,
which are the residue classes of X, Y, Z,, Z,,- - -, Z, respectively. {x,
Y, R4y Ray- + *, %,} 18 @ minimal basis of m, since £e¢MM2 Now we shall prove:

Theorem 2. Let Q be a ring defined above. Then
(i) @ s not semi-regular,



No. 8] Number of Irreducible Components of Ideal ete. 629

(if) Lo(Qu:m/Qu)=mn-+1, where u (uem) s a parameter.

Proof. by the definition of @, we have mz,=(0), ¢=1, 2,---, n,
consequently m consists of zero divisors only. So (i) follows immedi-
ately.

In order to prove (ii), we need the following three lemmas:

Lemma 1.

(i) wu is a parameter in Q if and only if u¢ éin.
i=1
13 -1
(ii) Qu-!-g_.l‘ inQQ“+§in, t=1,2,---,m.
Proof. It is easy to see that ini is a prime ideal belonging
i=1

to (0), and is a nilradical. (i) is a direct consequence of this fact.
We shall first prove the strict inclusion Qu-+Qz; =2 Qu. Assuming
that Qu+Qz,=Qu, we shall obtain a contradiction. From the as-

sumption, it follows that 2,¢eQu~Qz,CQu~ §”]in. Sinceéin is
=1 i=1
prime, QuAéin=<i in>uC2mzi=(0). On the other hand, as
1=1 t=1 =1

stated above, 2z, is an element of minimal basis of m, and is not equal
to zero, which is a contradiction.

Hence follows the strict inclusion Qu+ﬁ in;Qu-i-fini. To
i=1 =1

-1
prove this, we have only to consider the residue ring Q/ (E in>.
i=1

Lemma 2.

LQ<<Q”+§ in> Qu) =n.
Proof. Since mz,=(0), L, <<Qu+§l ta> / <Qu -|-g} sz>> =1 by

Lemma 1. Lemma 2 follows immediately.
Lemma 3. Let u be a parameter in Q, then
n n—1 n—2
<Qu—|—§1 in> :rn:(Qu—l—i:Z1 ta> :m=<Qu+§ in> M=

<o =(Qu+Qz,) : m=Qu : m.
Proof. First we shall prove the equality
(Qu+Qz,) : m=Qu : m. (1)
Since the inclusion (Qu+Qz,): mDQu : m is obvious, we have only to
prove the inverse inclusion. Let ¢ be an element of (Qu+-Qz,):m. We
have xt=ru-sz,, yt=ru+sz, for some 7,5 7,s'¢Q. From these
two equations, it follows that (r'x—ry)t=(r's—rs’)z,. If t belongs

to é Qz;, then te(0): mCQu:m. Then we have nothing to prove.
i=1
Therefore we shall assume that t¢ S:‘in. Sinceéin is prime,
=1 =1

(rx—ry)eQz,: tC(Z in> : tznZ Qz,. Since {x,v,2,2,--+,2,) is a
i=1 =1
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minimal basis of m, none of » and 7’ can be a unit element. Since
xt, ytem® and ru, ruem? it follows that sz, s'z,em?, consequently
s,s’em. Therefore xt=ru, yt=ru since mz,=(0). Hence we have

1nt=<Qx+Qy+§”] in>t=(Qx+Qy)tCQu, consequently ¢ belongs to
i=1
Qu:m. Thus we have proved the equality (1).
We can prove the equality <Qu+f2in> : m=(Qu+§ in> :m by
=1 =1

t—1
considering the residue ring @ / <§}in). q.e.d.
i=1

Proof of Theorem 2 (continued). By virtue of these lemmas,
we have

Lo((Qu : m)/Qu)
- (w0 o 0e) 1 (w0 )

nf(orges)nfonrger)lin

Let @ be the residue ring Q/é Qz;,, m be m/Z”] Qz,. It is easy to
i=1 i=1

see that @ is a one-dimensional semi-regular local ring and that the
maximal ideal m is generated by two elements. Then, by Corollary 2
to Theorem 1, the index of reducibility of an ideal generated by a para-

meter in @ such as Qu= <Qu—|—ﬁ in> / (ﬁ in> is equal to 1. Therefore
=1 =1

LQ<Qu+ﬁ_‘: in> ‘m / (Qu+ﬁ; in» — L5(@u : W/Qw)=1.
This completes the proof of Theorem 2.
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