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149. A New Theory o Relativity under the Non.Locally
Extended Lorentz Transformation Group

By Tsurusaburo TAKASU
Tohoku University, Sendai

(Comm. by Zyoiti SUETUNA, M.J.A., Nov. 12, 1964)

The present author has established [_16 an ameliorated theory
of relativity under the group of extended Lorentz transformations:

(1) --a()+a, (a=const., ----( 1)1/20+)),
( 2 --o(x),x"+, (o--const., ,--(--1)1/20+)),
l, m, ...; , Z, ...--1, 2, 3, 4; x=x, x--y, x--z, x=ir=ict; ((x, y, z):
rectangular Cartesian coordinates, t-time); (a($)) and (o,(x"’)).
orthogonal matrices with determinant :0; (x), (t), and (t): II-geodesic
rectangular coordinates [1...16; ’s: Kronecker deltas which are
3-dimensional extended equiform Laguerre transformations *, the
Einstein space (R--0) [dS=g(x)dx"dx-(--1)+lo%>O,
t-(x)dx" being the map of the Minkowski space (x) by the
inverse transformation of the extended Lorentz transformation (2),
so that connection is not necessary [28. Thereby the physical
interpretations of the geometrical objects were as follows:

dS-action, J,(x)-momentum-potential vector; principle of
equivalence-invariancy of physical laws under the group *

3
(physical change); "relativity"-referring to :; physical lines
-II-geodesic curves (straight lines inclusive);

( 4 ) Hamilton’s principle: aS-O --> equations of motion:

d d oo-oo +A =o + --0,
dS dS dS dS

where
5 )

the (4)representing II-geodesics (in the present author’s sense) in
4-dimension, which are in 3-dimension "Kanalfliichen" enveloped by
oriented II-geodesic spheres (in the present author’s sense) with the

particle (x x’, x) as center and a II-geodesic radius r-- dS. The

theory was resumed ([16, p. 623) in the comparison of the present
author’s theory with the Einstein’s, proving the immortal character
(comparable with that of the Newton’s law) of the former.

In this note, the said theory will be extended further by extending
the extended Lorentz transformations to "non-locally" ([17-20_)
extended Lorentz transformations. The general procedure consists in
considering
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(m) (m) (m) (m)

(x, , ..., x), (x, , ..., x), a(, , .., ),(6) A, , ..., x),
where &--dx/dS, etc. and the process is quite parallel and analogous
to that of [16, so that we may omit most calculations here and we
shall understand by g,, ,, , a, etc. those in (6). The results will
further be viewed through the Finsler-Craig-Synge-Kawaguchi spaces
(cf. Art. 4) as well as through the non-local field theory of H.
Yukawa (cf. Art. 5).

1. Non-locall II-geodesic curves. Since
(m)

(1.1) w --o,(x, , ..., x) dx"
is written in an invariant form, the (x) in the Minkowski space may
also be local curvilinear coordinates.
(1.2) A-Do,- --w,3D,
Non-local II-geodesic curves:

(1.3) d$ d (0 o +A(x, , x)- dS )dS dS dS dS

o (---+ (x, , ..., x)
dS dS

(1.4) d/2+ "d.t’-2dx--0, do,,--d.odx -0.
Differential and finite equations of non-local II-geodesic curves:

(1.b) d--dS, (-eonst.), -S+r- gS, (r-eonst.).
(1.6) d$/dS=a9($, , ..., $)--a,

(m)

(1.6)’ dx/dS=a9(x, , ..., x)=a, (a=const.).
The coordinates (x)=(x, y, z, r=ct), (St) and (t) will be called the
non-local II-geodesic rectangular coordinates.

The non-local II-geodesic curves (1.5) behave, as for meet and
join as well as for the extremal 3S=0 like straight lines. A special
kind of (1.5) is (x)=(x, y, z, r=ct)=(aS+c), (a, c: const.), which
represent a straight line in 4-dimension and a circular cone enveloped
by an oriented sphere with center (x, y, z) and radius r=ct.

The conditions for that the non-local II-geodesic curves d$t/dS-O
may be transformed into the non-local II-geodesic curves d$t/dS-O
are (cf. [1-16):

(m) (m)

(.7) da2(, , ..., )d$"-O, da(, , ..., )-0.
2. Non-locally extended Lorentz transformation group. By

virtue of (1.7), the differential equations
(m)

(2.1) std-a($, , ..., )sd$,
(m)

(2.)’ ,’-(, i, ..., )$,
which arise from (1.5), may be integrated, resulting to the non-locally
extended Lorentz transformation formulas:

()

(a const.),(2.2) -a2($, g, ..., $)$+a0,
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of which a special ones are

(2.3) o(x, , ..., x),x"+stw, (w-- const.),
(m)

(2.3)’ tt--w(x,
(2.2) and (2.3) are generalizations of (1) resp. (2).

That the totality of the non-locally extended Lorentz transfor-
mations (2.2)forms a group, which we will call the non-locally ex-
tended equiform Laguerre group in 3-dimension and the non-locally
extended Lorentz ransformation group in 4-dimension may be proved
quite as in [28, p. 7.

Since our new physical space undergo this transformation group,
the geometry under this group belongs to the "Erlanger Programm"
of Felix Klein (1872), so that connection is not necessary [28.

By virtue of (1.6) and (1.6)’, the formulas (1.6), (1.6)’, (1.7), (2.1),
(2.1)’, (2.2), (2.3) and (2.3)’ may be rewritten as follows:
(1.6) d$/dS-a12 (, , 0,..., 0)--a,
(1.6)’ dx/dS-aD (x, , 0,..., 0)--,
(1.7) da (, a, O, ..., O) d’=O, da (, a, O, ..., O) ’=0,
(2.1) st--td--a (,
(2.)’ --a(, , 0,..., 0)-a(, , 0,..., 0),
(2.2) t=a (, , O, ..., O) e A-a,
(2.3)

(x, O, ..., O) a"-.(2.3)’ , ,’ or aa, a,
whereby 4 transformation parameters (a1, a, a8, a4) arise anew. (2.1)’
and (2.3)’ show us that (a") and (at) undergo respective non-locally
extended orthogonal transformations.

3. Physical interpretations of the geometrical objects. The inter-
pretation

(m)

(3.1) (w(x, c, .., x))--(w(x, a, O, .., O))--momentum-potential vector
is seen to be quite natural owing to (1.6)’ and (1.2).
(3.2) dS=action.

The expressibility
(m)

(3.3) dS--g,(x, k, O, ..., x)dx"dx--(--1)+o%
is proved to be valid but for undergoing non-locally extended orthog-
onal transformations (2.1).

4. Considerations from the view points of Finsler-Craig-Synge*
Kawaguchi spaces. The metric space, in which an arc length S
along a curve x--x(t), (t--curve parameter), is given by an integral

x("))dt, (x’ dx/dt, etc.),(4.1) S-- F(x, x’,

satisfying the so-called Zermero’s conditions:
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(") F (x(.)
(4.2) ,= \x(")

F, -d"x/dt),

AF=
where the last relation has been shown 1938 by A. Kawaguchi and H.
Hombu, is called Kawaguchi space of order m, whose special cases are:

Finsler space: m--1. Craig-Synge space: m-2.
Since dS in the present author’s sense is the action, it is natural
in case n 4 to interpret F(x, x’, ..., x(’)), (t-- time) as the energy.
The Kawaguchi space is reducible to the Finsler space having n trans-
formation parameters (a)=(a1, 2, ", an) in addition by specializing
the coordinates (x) to II-geodesic rectangular coordinates in the base
manifold [28, so that dx/dS-a. Now for the Finsler space cor-
responding to
(4.3) dS--F(x, &)(dt),
where F is of degree one in &-dx/dS, we have
(4.4) dS-- g,(x, &,)dx"dx,
(4.5) g,(x, c)- 1 3F(x, c) [cf. (6).

We can render (4.4) into the form
(4.6) dS2- wtw, (o w(x, )dx")
but for undergoing non-locally extended orthogonal transformations.

Another procedure is to adopt the metric tensor ([25, p. 724, *gij):
(m)

(4.6) g,(x, c,
etc. for the (6), where

(m)
(4.7) F=(x, , ..., x),

*E--

_
(-- 1 F(.), f--

(m + 1) (m)
x" ---H"(x", ..., x"),

the A being defined by the recurring formulae

A, F, (, /--0, 1,..., m),
dt

(4.8)

(4.9)

A--F-), A--O, A--O, (,=1, 2, ..., m; o--2, 3, ..., m).
K

*@,--F- * (K--O, 1,... m),E,A_+,
a-’g

K

@,--r-l,* (g:0, 1 m).

--(--1) K (F("))(-)’
a-g

5. A generalization of H. Yukawa’s non-local field theory.

theory by putting
H. Yukawa ([17, [18) has established a non-local (i.e. bilocal!) field
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in the space-time (x)=(x, y, z, ict). If we put
(5.2) x--x=2pc, (cc= l),
then (c) are the direction cosines, so that ((X), p, (c)) affords us a
line-element space, which is a special Finsler space (cf. [20).

Applying this principle to our space ($), we obtain a non-locally
extended line-element space (($), p, (at)), where
(5.3)
In this way, we can generalize the H. Yukawa’s non-local field theory.
Thus the theory of relativity under the non-locally extended Lorentz
transformation group of the present author is a generalization of
the H. Yukawa’s non-local field theory.

6. Comparison of the theory of relativity of A. Enstein and
the present theory of T. Takasu. This comparison may be done
quite as in 16 being led to the conclusion:

The classical physics, the theory of special relativity, in which
we shall have

-.., 0, ..., 0))- 0 moC o
\ 0 0 0 moc/

the gravitation theory, the electromagnetic theory, the universally
accepted part of quantum theory, the T. Takasu’s theory [16, the
K. Kondo’s theories ([26, [27) and the H. Yukawa’s non-local field
theory ([17-19) are in the

A. Einstein’s theory,
which is a mere conjecture and
an approximation theory,

not unified.

T. Takasu’s theory,
which is a decisive exact theory
with immortal character as the
Newton’s law, unified.
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