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16. The Causality Condition in Nowhere
Dense Perfect Model

By Hideo
(Comm. By Kinjir Kuu, ...., Jan. 12, 1965)

1. Introduction. From the research about the source
(satisfying the causality condition) which is effective to cut-off,
nowhere dense perfect model (or A-integral model) was found in _4.
But even if this model be used, it seems that the usual causality
condition is not necessarily satisfied. In 2 the causality condition
rewritten to the mathematical form by using a sort of modeling is
investigated, and the milder causality condition (found from this
modeling) which is satisfied by the nowhere dense perfect set is
looked for. Furthermore the fitness of this causality condition
for the various examples is investigated. Next the fitness of this
condition for two and three dimensional nowhere dense perfect
model is also investigated. The coincidence between this model of
causality condition and the usual causality condition is not necessarily
obvious. But it will be sure that there is some relation between
them, and it seems valuable that Dini’s derivative corresponding to
the finite difference for non-local field theory can be obtained in fully
exact form.

In 3 A-integral representation of distribution whose carrier
satisfies the above mild causality condition is constructed. Further-
more it is stated that the sequence of A-integral representa-
tions whose carrier satisfies the global causality condition can
be also constructed. In 4 the various criterions of this research
are shown.

2. The discriptions o? causality condition by using a sort

of modeling form.
Consider the two dimensional Euelid space with coordinate

(t,x), and one dimensional set E defined on the x axis. Next,

construct the following function =f(a)- op(a:)da: by using the

1/c for e E (the complement set of E)function ()-
0 for e E,

where c is a constant corresponding to the light velocity. This
function t,--f() can be rewritten to the form --f- ($) (not neces-
sarily one valued with respect to ).

Definition 1. If 0< (--)/(f()--f())- c holds good for
any pair (, 0) with the property =/=, this set E is called
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global causal set.
Definition 2. If the function =f-() is one valued, and if

all possible usual differential coefficients of this function are not
larger than c, then this set E is called local causal set.

Now, by using Dini’s lower derivate _Df-($), generalized causal
set can be defined.

Definition 3. If the function --f-(t) is one valued, if _Df-()
can be defined for all , and if it is equal to c, this set E is called
.generalized causal set.

The local causal set treated in this article is also generalized

causal set. Furthermore f Df- ()dt becomes to c$+d and this set

E is considered as the global causal set with respect to this Dini’s
lower derivate.

tIere, for various considerable sets, it is investigated whether
the conditions in Definitions 1-3 (which is used for only the classifi-
cation of the type of the set) are satisfied or not.

Example 1o The set consisting of finite points becomes to a
global, generalized and local causal set.

Example 2. An interval (open, closed or others) is not a global,
generalized and local causal set.

Since the properties of the above sets are well known, the facts
described in Examples 1-2 are obvious.

Let E denote the nowhere dense perfect set constructed in 4
with positive measure contained in the interval 0, 1.

Lemma 1. E is no a global causal se bu a local causal se.
Fur$hermore it is also a generalized causal seg.

Proof. Since the measure of E is positive, it follows that
(1-0)/(f(/l)-f(0))-l/{(1-mes EO/c}-c/(1-mes E)>c holds good.
Then E is not a global causal set. At the each point in the open
complementary set E, it is obvious that 1/f’(x)-c holds good.
Next choose an arbitrary point x0 contained in Ex. From the
definition of nowhere dense perfect set it is the end point of the
closure of an open connected component contained in E. If it is the
left end of this component, 1/(Def(o))-c, and if it is the right end
of it, 1/(Def (x0))- c.

If 1/(Def(Xo))- c, then 1/(Def(Xo))- (3/2) c >_ c, and
if 1/(Def(Xo))- c, then 1/(Df(Xo))- (3/2)c >_ c.
Hence in each point of E, the usual differential coefficient

cannot be obtained. Furthermore, Dini’s lower derivate can be
defined and is equal to c.

Then E is the local and generalized causal set.
From the same arguments as one in Lemma 1 the following
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result is obtained.
Example 3. Nowhere dense perfect set with positive measure

is not a global causal set but a local and generalized causal set.
For f() related to the global causal set E, the usual differential

coefficient Df(x) can be defined for all . Then we assert the fol-
lowing.

Theorem 1. The family of the global causal sets is contained
in the family of the generalized causal sets. And the family of
the generalized causal sets is contained in the family of the loca
causal sets.

Let denote a straight line, and E denote a two or three
dimensional set.

Definition 4. If E is the sum of a nowhere dense perfect
set (may be void set) and an isolated points set (may be void set)
for any l, then we say that E is nowhere dense to any direction.

The same arguments with respect to a fixed direction are also
possible. Let E (i--1, 2, 3) denote the nowhere dense perfect sets.

txample 4. E E E is nowhere dense to any direction.
Let L (i-1, 2, 3) denote the closed intervals.

Ixample 5. E L. I (or E E: I) is nowhere dense to,

fixed direction not to be pararell to the plane II (I).
The spherical symmetric nowhere dense perfect set in E (which

is nowhere dense to any direction) can be also constructed.
3. The countable infinite sum of nowhere dense perfect:

sets. In this paragraph, examples of the local causal dense set, the
generalized causal dense set and the global causal dense set are
shown. The most important one of them is the local and generalized
causal dense set which is constructed by the sum of the countable
infinite nowhere dense perfect sets with positive measure. Further-
more A-integral representation of distribution (by ton 2 and
BHsorpaoBa 1) defined on this set is constructed.

txample 5o The dense set E consisting of all rational points
in real axis is the global causal dense set with total measure 0.

Ixample 7. Let E denote the nowhere dense perfect set shown
in 4 as example which is the subset of the interval 0, 1, and
E denote the 1In similar reduction of E. At the first step, E is
arranged in the interval 2n, 2n/l (for n-0, ___1, _+2,...) and
this arranged set is denoted by F. At the second step, E is
arranged in the middle of the open connected component of F whose
length is larger than 3/2, and this arranged set is denoted by F..
Iterating the same processes (countable infinite times) the set F is
constructed. This F is the above local and generalized causal dense set.
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Let’s select an arbitrary nowhere dense perfect set defined in
an open finite interval (a, b) and denote it by E(a, b).

Lemma 2. For any positive number eO, .there exists a
positive integer N such that the distance between the two neighbour-
ing open connected elements of (a, b)-E (a, b)whose length is
larger than 1IN is always smaller than e.

Proof. Suppose that the finite open covering of closed interval
[a, b chosen from the family of the e/2 neighbourhoodsU (x) of all
rational points x consists of n neighbourhoods U () (3"= 1, 2,..., n).
Since E is nowhere dense, each neighbourhood contains the point y
in some open connected component of the set (a, b)-E(a, b). We
denote by l (3"-1, 2,..., n) the length of the above open connected
component which contains y. The positive integer N with the pro-
perty ll/N(j=l, 2,..., n) is the required N.

From this Lemma 3 it is deduced that F has the following
character.

(1) For positive number e::>0 with the property 3/2>e/3, there
exists a fixed positive integer k such that the distance between any
two neighbouring nowhere dense perfect sets (E, n <: <: n+ k- 1)
used for the construction of F,+-F is smaller than e>0.

Lemma . F. is a local and generalized causal set.
Proof. For any point p (contained in F), there exists a positive

integer n (depending on p) such that p is contained in F.. Since
F. is a nowhere dense perfect set, p must be the boundary point
of an open connected component I,, of F. According to the argument
in Lemma 1, F. is a generalized and local causal set. Therefore it
is only remained to consider the effect of the set F-F. The
sequence {x} constructed by the elements in I,, with the property
dist (p, x)---o(1/2) can be chosen so as to satisfy the condition

[I I_,(x)dx[-o(1/4),’, where I_(x)is the characteristic func-

tion of F-F. As m tends to , I_(x)dx /dist (p, x)-
p

o(1/2) tends to zero. From the above result it can be easily seen
that F-F does not give the effect to the requirement of local
and generalized causality for the point p. Then the following con-
clusion of this Lemma is asserted.

(2) F is the local and generalized causal set.
Definition S. If the function f(x) defined in the interval a, bJ

satisfy the following two conditions.
1) mes (x x a, b, If(x)l >n}-o(1/n)

there exists a limit limIf, (x) dx,2)
3a
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then we say that f(x) is A-integrable and the above limit is A-
integral of f(x) 1-3.

Theorem 2. On this F, A-integral representation in 1-2
of an arbitrary distribution can be constructed.

Poo. At the first step, the derivative of measurable function
is treated. 0nly the proof of this step is needed for our purpose.
The measurable function F(x) can be represented by the series of
continuous functions F (x) such that =w [F, [0, 2 (the ampli-
tude of F (x) in the interval [0, 2) tends to zero as 1 tends to o.

Namely F(x) 7=F(x) holds good.
This series can be chosen by using the method in [2.
Let {e} denote the decreasing sequence of positive numbers

with the property lira e-0 and {n} denote the subsequence of the

natural number’s sequence such that the distance between any two
neighbouring nowhere dense perfect sets used for the construction
of F.I+-F, is smaller than e0.

From Lemma 2 the choice of the sequence {n} can be possible.
Let {n} denote the subsequence of the natural number’s sequence
with the property = 1/n_2/n. For example, the subsequence of
{[exp nJ} satisfies this property.

The density function fi (x) with the following properties is con-
structed from the function F (x)by using the suitable choice of
{e} and {n}.

a) The values of fi (x) are only _+n, and the carrier of fi (x)
is the subset of F,i+-F.i.

b) fi (x) which is defined in the subset of F,I+-FI satisfies

the condition I,= F (x)-,= f (x) dx < /3.
Since tends to zero as tends to , it follows from the

property ,= 1/n_2/n that the condition rues {x x e 0, 2],
f(x) >n}-O(1/n holds good.

,= F (x)-Furthermore, from the condition

</3 it follows that there exists a limit lim ,7=fin (x)dx.

Then f(x)=,7=fi(x) is A-integrable function defined in [0, 2.
By using the summation, we can easily take off the restriction

related to the interval [0, 2, and construct the locally A-integrable
function defined in (- , ).

By using the same estimation as one used for the proof in [2 this
function can be represented as F’(x) by the distribution’s meaning.

Next by using the above conclusion and the same estimation as
one used for the proof in [2, the conclusion of this Theorem 2 can



78 H. YAMAGATA [Vo|. I,

be easily proved.
Using this representation of distribution defined on the local

causal set, the same arguments as 4 can be iterated and the same
result as 4 can be obtained.

Furthermore, by using the sequence of this representations, the
representation of distribution defined on the global causal set can be
also constructed.
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